Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.
Supplemental Notice of Allowability

<table>
<thead>
<tr>
<th>Application No.</th>
<th>Applicant(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/616,583</td>
<td>ZAZOVSKY ET AL.</td>
</tr>
<tr>
<td>Examiner</td>
<td>Art Unit</td>
</tr>
<tr>
<td>SEAN D. ANDRISH</td>
<td>3672</td>
</tr>
</tbody>
</table>

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address--
All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. ☒ This communication is responsive to 20 March 2009.

2. ☒ The allowed claim(s) is/are 1, 4 - 11, 14 - 18, 21, 24 - 29, and 31 - 35.

3. ☐ Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) ☐ All b) ☐ Some* c) ☐ None of the:
 1. ☐ Certified copies of the priority documents have been received.
 2. ☐ Certified copies of the priority documents have been received in Application No. ______.
 3. ☐ Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: ______.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.

4. ☐ A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.

5. ☐ CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
 (a) ☐ including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached
 1) ☐ hereto or 2) ☐ to Paper No./Mail Date ______.
 (b) ☐ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date ______.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).

6. ☐ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. ☐ Notice of References Cited (PTO-892)
3. ☐ Information Disclosure Statements (PTO/SD/08), Paper No./Mail Date ______
4. ☐ Examiner's Comment Regarding Requirement for Deposit of Biological Material
6. ☐ Interview Summary (PTO-413), Paper No./Mail Date ______
7. ☒ Examiner's Amendment/Comment
8. ☐ Examiner's Statement of Reasons for Allowance
9. ☐ Other ______.
SUPPLEMENTAL EXAMINER’S AMENDMENT

1. An examiner’s amendment to the record appears below. Should the changes and/or additions be unacceptable to applicant, an amendment may be filed as provided by 37 CFR 1.312. To ensure consideration of such an amendment, it MUST be submitted no later than the payment of the issue fee.

Authorization for this examiner’s amendment was given in a telephone interview with Dave Hofman on 28 May 2009. Dave Hoffman called the examiner to inform him that the Examiner’s Amendment of June 5, 2009 contained a claim line numbering mistake.

The following editorial changes have been made to place the application in condition for allowance:

In the previous Examiner’s Amendment to the Claims:

In claim 15, line 46-17: --the-- has been inserted before “second”.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to SEAN D. ANDRISH whose telephone number is (571)270-3098. The examiner can normally be reached on Mon - Fri, 7:30am - 5:00pm, Alternate Fri off, EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s supervisor, David Bagnell can be reached on (571) 272-6999. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.
Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/David J. Bagnell/
Supervisory Patent Examiner, Art Unit 3672

SDA
8/20/2009
NOTICE OF ALLOWANCE AND FEE(S) DUE

23718
7590
06/05/2009

SCHLUMBERGER OILFIELD SERVICES
200 GILLINGHAM LANE
MD 200-9
SUGAR LAND, TX 77478

EXAMINER
ANDRISH, SEAN D
ART UNIT 3672
PAPER NUMBER

DATE MAILED: 06/05/2009

APPLICATION NO. 11/616,583
FILING DATE 12/27/2006
FIRST NAMED INVENTOR F. Zazovsky
ATTORNEY DOCKET NO. 19,0438
CONFIRMATION NO. 2776

TITLE OF INVENTION: FORMATION FLUID SAMPLING APPARATUS AND METHODS

APPLN. TYPE NONPROVISIONAL
SMALL ENTITY NO
ISSUE FEE DUE $1510
PUBLICATION FEE DUE $300
PREV. PAID ISSUE FEE $0
TOTAL FEE(S) DUE $1810
DATE DUE 09/08/2009

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:

A. If the status is the same, pay the TOTAL FEE(S) DUE shown above,

B. If the status above is to be removed, check box 5b on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:

A. Pay TOTAL FEE(S) DUE shown above, or

B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and 1/2 the ISSUE FEE shown above.

II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.

III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.
PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail

Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

or Fax
(571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate “FEE ADDRESS” for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

23718
7590
06/05/2009

SCHLUMBERGER OILFIELD SERVICES
200 GILLINGHAM LANE
MD 200-9
SUGAR LAND, TX 77478

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission
I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

Depositor's name

Signature

(Date)

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

TITLE OF INVENTION: FORMATION FLUID SAMPLING APPARATUS AND METHODS

APPLN. TYPE SMALL ENTITY ISSUE FEE DUE PUBLICATION FEE DUE PREV. PAID ISSUE FEE TOTAL FEE(S) DUE DATE DUE
nonprovisional 0 1510 300 0 1810 09/08/2009

EXAMINER ART UNIT CLASS-SUBCLASS
ANDRISH, SEAN D 3672 166-264000

1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363).
- Change of correspondence address (Change of Correspondence Address Form PTOSB/122) attached.
- "Fee Address" indication (or "Fee Address" Indication form PTOSB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.

2. For printing on the patent front page, list
- the names of up to 3 registered patent attorneys or agents OR, alternatively,
- the name of a single firm (having as a member a registered attorney or agent) and the names of up to 2 registered patent attorneys or agents. If no name is listed, no name will be printed.

3. CHANGE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.

(A) NAME OF ASSIGNEE

(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent):
- Individual
- Corporation or other private group entity
- Government

4a. The following fee(s) are submitted:
- Issue Fee
- Publication Fee (No small entity discount permitted)
- Advance Order - # of Copies

4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)
- A check is enclosed.
- Payment by credit card. Form PTO-2038 is attached.
- The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number (enclose an extra copy of this form).

5. CHANGE IN ENTITY STATUS (from status indicated above)
- a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27.
- b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27(g)(2).

NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.

Authorized Signature

Date

Typed or printed name

Registration No.

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PTOL-85 (Rev. 08/07) Approved for use through 08/31/2010. OMB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE.
Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)

The Patent Term Adjustment to date is 0 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 0 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.
Examiner-Initiated Interview Summary

Application No. Applicant(s)
11/616,583 ZAZOVSKY ET AL.
Examiner Art Unit
SEAN D. ANDRISH 3672

All Participants: Status of Application: _____
(1) SEAN D. ANDRISH. (3) _____.
(2) Dave Hofman. (4) _____.

Date of Interview: 28 May 2009 Time: _____

Type of Interview:
☐ Telephonic
☐ Video Conference
☐ Personal (Copy given to: ☐ Applicant ☐ Applicant’s representative)

Exhibit Shown or Demonstrated: ☐ Yes ☐ No
If Yes, provide a brief description: .

Part I.
Rejection(s) discussed:

Claims discussed:
1, 4, 7 - 11, 14, 15, 21, 25, 28, and 33

Prior art documents discussed:

Part II.
SUBSTANCE OF INTERVIEW DESCRIBING THE GENERAL NATURE OF WHAT WAS DISCUSSED:
See Continuation Sheet

Part III.
☐ It is not necessary for applicant to provide a separate record of the substance of the interview, since the interview directly resulted in the allowance of the application. The examiner will provide a written summary of the substance of the interview in the Notice of Allowability.
☐ It is not necessary for applicant to provide a separate record of the substance of the interview, since the interview did not result in resolution of all issues. A brief summary by the examiner appears in Part II above.

(Applicant/Applicant’s Representative Signature – if appropriate)
Continuation of Substance of Interview including description of the general nature of what was discussed: Examiner contacted applicant's attorney to inform him that the application was in condition for allowance except for some antecedent basis errors and editorial changes in claims 1, 4, 7 - 11, 14, 15, 21, 25, 26, and 33. Changes were agreed upon. Examiner will generate an examiner's amendment to make the agreed upon changes.

Examiner and applicant's attorney discussed amending Fig. 12 to include proper cross-hatching and the removal of selected arrows from Fig. 5. Applicant's attorney agreed to amend the figures to make the agreed upon changes.
<table>
<thead>
<tr>
<th>CLAIM</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>✓</td>
</tr>
<tr>
<td>16</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>✓</td>
</tr>
<tr>
<td>18</td>
<td>✓</td>
</tr>
<tr>
<td>19</td>
<td>✓</td>
</tr>
<tr>
<td>20</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>✓</td>
</tr>
<tr>
<td>22</td>
<td>✓</td>
</tr>
<tr>
<td>23</td>
<td>✓</td>
</tr>
<tr>
<td>24</td>
<td>✓</td>
</tr>
<tr>
<td>25</td>
<td>✓</td>
</tr>
<tr>
<td>26</td>
<td>✓</td>
</tr>
</tbody>
</table>

- **Application/Control No.**: 11616583
- **Applicant(s)/Patent Under Reexamination**: ZAZOVSKY ET AL.
- **Examiner**: SEAN D ANDRISH
- **Art Unit**: 3672

☑ Claims renumbered in the same order as presented by applicant
Notice of Allowability

Application No. 11/616,583
Applicant(s) ZAZOVSKY ET AL.
Examiner SEAN D. ANDRISH
Art Unit 3672

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address--

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. **THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS.** This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. ☑ This communication is responsive to **20 March 2009**.

2. ☑ The allowed claim(s) is/are 1, 4 - 11, 14 - 16, 21, 24 - 29, and 31 - 35.

3. ☐ Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) ☐ All b) ☐ Some* c) ☐ None of the:
 1. ☐ Certified copies of the priority documents have been received.
 2. ☐ Certified copies of the priority documents have been received in Application No. _____.
 3. ☐ Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: _____.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. **THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.**

4. ☐ A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER’S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.

5. ☑ CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
 a) ☐ including changes required by the Notice of Draftsman’s Patent Drawing Review (PTO-948) attached
 1) ☐ hereto or 2) ☐ to Paper No./Mail Date _____.
 b) ☑ including changes required by the attached Examiner’s Amendment / Comment or in the Office action of Paper No./Mail Date 28 May 2009.

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).

6. ☐ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner’s comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. ☐ Notice of References Cited (PTO-892)
3. ☐ Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date _____
4. ☐ Examiner’s Comment Regarding Requirement for Deposit of Biological Material
6. ☑ Interview Summary (PTO-413), Paper No./Mail Date 28 May 2009.
7. ☑ Examiner’s Amendment/Comment
8. ☐ Examiner’s Statement of Reasons for Allowance
9. ☐ Other _____.
EXAMINER’S AMENDMENT

1. An examiner’s amendment to the record appears below. Should the changes and/or additions be unacceptable to applicant, an amendment may be filed as provided by 37 CFR 1.312. To ensure consideration of such an amendment, it MUST be submitted no later than the payment of the issue fee.

Authorization for this examiner’s amendment was given in a telephone interview with Dave Hofman on 28 May 2009.

The following editorial changes have been made to place the application in condition for allowance:

In the Claims:

In claim 1, line 10: --relative to the first guard inlet-- has been inserted after "opposite direction";

In claim 1, line 13: --the-- has been inserted before "contaminated";
In claim 1, line 14: --the-- has been inserted before “virgin”;
In claim 1, line 15: --the-- has been inserted before “first guard”;
In claim 1, line 16: --the-- has been inserted before "second guard”;
In claim 4, line 10: --relative to the first guard inlet-- has been inserted after "opposite direction";
In claim 4, line 13: --the-- has been inserted before “contaminated”;
In claim 4, line 14: --the-- has been inserted before “virgin”;
In claim 7, line 2: “the guard inlet assemblies has a diameter, and wherein the at least one guard inlet” has been changed to --the first and the second guard inlet assemblies has a diameter, and wherein the at least one of the first and the second guard inlet--;

In claim 8, line 2: --the-- has been inserted before "first" and --the-- has been inserted before "second";

In claim 9, line 2: --the-- has been inserted before "second";

In claim 10, line 2: "clean up" has been changed to --cleanup--;

In claim 11, line 1: --the-- has been inserted before “first”;

In claim 11, line 2: --the-- has been inserted before “second”;

In claim 14, line 2: --the-- has been inserted before “second”;

In claim 15, line 10: --relative to the first guard inlet-- has been inserted after "opposite direction”;

In claim 15, line 12: --the-- has been inserted before “second”;

In claim 15, line 13: --the-- has been inserted before “contaminated”;

In claim 15, line 14: --the-- has been inserted before "virgin";

In claim 15, line 16: --the-- has been inserted before “first”;

In claim 15, line 16: --the-- has been inserted before “second”;

In claim 21, line 11: --relative to the first guard inlet-- has been inserted after "opposite direction”;

In claim 21, line 12: --the-- has been inserted before "first";

In claim 21, line 13: --the-- has been inserted before “second”;

In claim 25, line 2: --second-- has been inserted before “guard ring”;
In claim 25, line 3: “first wing” has been changed to --second wing--;

In claim 25, line 4: --second-- has been inserted before "guard";

In claim 28, line 2: "first guard inlet, and second guard inlet” has been changed to --the first guard inlet, and the second guard inlet--;

In claim 33, line 11: --relative to the first guard inlet-- has been inserted after "opposite direction”;

In claim 33, line 12: --the-- has been inserted before “first”;

In claim 33, line 13: --the-- has been inserted before “second”;

In claim 33, line 15: “an outer periphery” has been changed to --the outer periphery--;

In claim 33, line 17: "an outer periphery" has been changed to --the outer periphery--

In the Drawings:

The following changes to the drawings have been approved by the examiner and agreed upon by applicant: amended figures to include proper cross-hatching in the cross-sectional views (Fig. 12) and the removal of selected arrows in Fig. 5. Applicant agreed to make the necessary changes. In order to avoid abandonment of the application, applicant must make these above agreed upon drawing changes.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to SEAN D. ANDRISH whose telephone number is (571)270-3098. The examiner can normally be reached on Mon - Fri, 7:30am - 5:00pm, Alternate Fri off, EST.
If attempts to reach the examiner by telephone are unsuccessful, the examiner’s supervisor, David Bagnell can be reached on (571) 272-6999. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/David J. Bagnell/
Supervisory Patent Examiner, Art Unit 3672

SDA
6/1/2009
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: $Zazovsky, et al. $ Confirmation No.: 2776
Serial No.: 11/616,583 $ Group Art Unit: 3672
Filed: December 27, 2006 $ Examiner: Andrish, Sean D.
For: Formation Fluid Sampling $ Attorney Docket No.: 19.0438
Apparatus and Methods

Commissioner for Patents
Mail Stop Amendment
P.O. Box 1450
Alexandria, VA 22313-1450

DRAWING AMENDMENT

Please amend the above-identified application as follows:

Amendments to the Drawings begin on page 2 of this paper and include an attached replacement sheet.

Remarks/Arguments begin on page 3 of this paper.

An Appendix including amended drawing figures is attached following page 3 of this paper.
Amendments to the Drawings:

The attached sheet of drawings includes changes to Fig. 5. This sheet, which includes Figs. 5 and 6, replaces the original sheet including Figs. 5 and 6. In Fig. 5, selected fluid flow lines have been removed for the sake of clarity.

Attachment: Replacement Sheet
REMARKS

Per the Examiner’s request, this amendment removes selected fluid flow lines from Fig. 5 in order to improve the clarity of Fig. 5. The present amendment makes no additional changes to the application, including the claims and the remainder of the specification.

Reconsideration of the present application in light of the above amendments and the following remarks is respectfully requested.

Applicants further note that no fee is believed required for consideration of this Amendment. However, if any fee is necessary, Applicants hereby authorize payment of such fee from Deposit Account No. 19-0610 (19.0438).

Should the Examiner deem that an interview with Applicants’ undersigned attorney would expedite consideration, the Examiner is invited to call the undersigned attorney at the telephone number indicated below.

Respectfully submitted,

/Dave R. Hofman/
Dave R. Hofman, Reg. No. 55,272
Attorney for Applicants

Dated: May 28, 2009

Schlumberger Oilfield Services
200 Gillingham Lane
MD 200-9
Sugar Land, Texas 77478
Telephone: (281) 285-8809
Facsimile: (281) 285-8821
RESPONSE TO NON-FINAL OFFICE ACTION MAILED JANUARY 5, 2009

In response to the Non-Final Office action of January 5, 2009, please amend the above-identified application as follows:

Amendments to the Specification begin on page 2 of this paper.

Amendments to the Claims are reflected in the listing of claims which begins on page 3 of this paper.

Amendments to the Drawings begin on page 12 of this paper and include both an attached replacement sheet and an annotated sheet showing changes.

Remarks/Arguments begin on page 13 of this paper.

An Appendix including amended drawing figures is attached following page 16 of this paper.
Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 a sample inlet provided on a sample inlet assembly including a sample inlet extension mechanism;
 a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis, wherein the first guard inlet is provided on a first guard inlet assembly including a first guard inlet extension mechanism;
 a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis, wherein the second guard inlet is provided on a second guard inlet assembly including a second guard inlet extension mechanism;
 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid;
 an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid;
 an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet, wherein the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet;
 wherein the sample inlet extension mechanism, the first guard inlet extension mechanism, and the second guard inlet extension mechanism are operable independently of one another.

Claims 2 and 3. (Canceled).
4. (Currently Amended) A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:

a sample inlet provided on a sample inlet assembly including a sample inlet extension mechanism;

a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis, wherein the first guard inlet is provided on a first guard inlet assembly including a first guard inlet extension mechanism;

a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis, wherein the second guard inlet is provided on a second guard inlet assembly including a second guard inlet extension mechanism;

at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid; and

an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid;

a sample inlet packer completely surrounding an outer periphery of the sample inlet;

a first guard inlet packer completely surrounding an outer periphery of the first guard inlet; and

a second guard inlet packer completely surrounding an outer periphery of the second guard inlet;

in which the sample inlet packer, first guard inlet packer, and second guard inlet packer are respectively formed as an inlet packer segment, first guard packer segment, and second guard packer segment of a composite packer having a substantially contiguous outer periphery wherein the sample inlet extension mechanism, the first guard inlet extension mechanism, and the second guard inlet extension mechanism are operable independently of one another.

5. (Currently Amended) The fluid sampling system of claim [[4]] 1, in which the composite inlet packer has an oval-shaped outer periphery has an oval shape.
6. (Currently Amended) The fluid sampling system of claim [[2]] 1, in which the sample inlet assembly has a diameter, and wherein the first and second guard inlet assemblies are longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.

7. (Currently Amended) The fluid sampling system of claim [[2]] 1, in which at least one of the guard inlet assemblies has a diameter, and wherein the at least one guard inlet assembly is longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.

8. (Currently Amended) The fluid sampling system of claim [[2]] 1, in which the sample inlet assembly, first guard inlet assembly, and second guard inlet assembly are provided on a stabilizing blade of a drilling tool.

9. (Currently Amended) The fluid sampling system of claim [[2]] 1, in which the sample inlet is azimuthally offset from the first and second guard inlets.

10. (Currently Amended) The fluid sampling system of claim [[2]] 1, further comprising a third guard inlet fluidly connected to the clean up flowline.

11. (Original) The fluid sampling system of claim 1, in which the sample inlet, first guard inlet, and second guard inlet are integrally provided on a single probe assembly including an inlet extension mechanism.

Claims 12 and 13. (Canceled).
14. (Previously Presented) The fluid sampling system of claim 1, in which the first and second packer segments further comprise a reinforcement material.

15. (Previously Presented) A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:

 a sample inlet provided on a sample inlet assembly including a sample inlet extension mechanism;

 a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis, wherein the first guard inlet is provided on a first guard inlet assembly including a first guard inlet extension mechanism;

 a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis, wherein the second guard inlet is provided on a second guard inlet assembly including a second guard inlet extension mechanism;

 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid;

 an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid; and

 an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet;

 in which an exterior face of the inlet packer includes a guard channel; and

 wherein the sample inlet extension mechanism, the first guard inlet extension mechanism, and the second guard inlet extension mechanism are operable independently of one another.

16. (Original) The fluid sampling system of claim 1, in which the sample inlet has an oval-shaped cross-sectional profile, with a major axis perpendicular to the wellbore axis and a minor axis parallel to the wellbore axis.
17. (Original) The fluid sampling system of claim 1, in which the system is associated with a wireline tool.

18. (Original) The fluid sampling system of claim 1, in which the system is associated with a drilling tool.

Claims 19 and 20. (Canceled).

21. (Currently Amended) A probe assembly for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:

an inlet extension mechanism;

a sample inlet coupled to the inlet extension mechanism;

a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis;

a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis; and

an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet;

in which an exterior face of the inlet packer includes a guard channel, and in which the guard channel includes a guard ring section completely surrounding an outer periphery of the first guard inlet and at least a first wing section connected to and extending away from the guard ring section.
Claims 22 and 23. (Canceled).

24. (Currently Amended) The probe assembly of claim [[23]] 21, in which the guard channel further includes a second wing section connecting to and extending away from the guard ring section.

25. (Currently Amended) The probe assembly of claim [[23]] 21, further including a second guard channel having a guard ring section completely surrounding an outer periphery of the second guard inlet and at least a first wing section connected to and extending away from the guard ring section.

26. (Previously Presented) The probe assembly of claim 21, in which the guard channel is defined by a channel insert coupled to the inlet packer.

27. (Original) The probe assembly of claim 26, in which the channel insert is mechanically coupled to the inlet packer.

28. (Previously Presented) The probe assembly of claim 21, in which the sample inlet, first guard inlet, and second guard inlet are pivotally coupled to the inlet extension mechanism.
29. (Currently Amended) A downhole tool connected to a drill string positioned in a wellbore penetrating a subterranean formation along a wellbore axis, the tool comprising:
 a drilling collar having at least one stabilizing blade defining a blade axis;
 an inlet extension mechanism housed within the stabilizing blade; and
 a probe assembly *pivotally* coupled to the inlet extension mechanism, the probe assembly comprising:
 a sample inlet having a mouth portion with a first profile dimension in a direction parallel to the blade axis and a second profile dimension in a direction perpendicular to the blade axis, in which the first profile dimension is greater than the second profile dimension;
 an inner packer completely surrounding an outer periphery of the sample inlet;
 a guard inlet extending completely around an outer periphery of the inner packer;
 and
 an outer packer completely surrounding an outer periphery of the guard inlet.

30. (Canceled).

31. (Original) The downhole tool of claim 29, in which the mouth portion has a generally oval shape cross-sectional profile, with the first profile dimension comprising a major axis and the second profile dimension comprising a minor axis.

32. (Original) The downhole tool of claim 29, in which the second profile dimension is less than approximately 3.5 inches.
33. (New) A probe assembly for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 an inlet extension mechanism;
 a sample inlet coupled to the inlet extension mechanism;
 a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis;
 a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis; and
 an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet;
 wherein an exterior face of the inlet packer includes a guard channel comprising:
 a central ring section completely surrounding an outer periphery of the sample inlet;
 a first guard ring section completely surrounding an outer periphery of the first guard inlet;
 a second guard ring section completely surrounding an outer periphery of the second guard inlet;
 a first link section extending between the central ring section and the first guard ring section; and
 a second link section extending between the central ring section and the second guard ring section.

34. (New) The probe assembly of claim 33, in which the guard channel is defined by a channel insert coupled to the inlet packer.
35. (New) The probe assembly of claim 34, in which the channel insert is mechanically coupled to the inlet packer.
Amendments to the Drawings:

The attached drawings replace all existing drawings.

Attachment: Replacement Sheets 1-8
REMARKS

Claims 1, 2, 4-11, 14-18, and 20-32 were previously pending in the present application. Claims 2, 20, 22, 23 and 30 are currently canceled without prejudice or disclaimer, and new claims 33-35 are currently added. Consequently, claims 1, 4-11, 14-18, 21, 24-29 and 31-35 are currently pending in the present application.

Reconsideration of the present application in light of the above amendments and the following remarks is respectfully requested.

Objections to the Drawings

The Examiner has objected to the drawings because reference character 222 has been used to designate both “first guard inlet” and “first guard probe” and reference character 224 has been used to designate both “second guard inlet” and “second guard probe” as recited in paragraph [0081]. Paragraph [0081] is currently amended to correct this inadvertent error.

The Examiner has also objected to Figs. 5 and 6 as being too dark, and Fig. 12 for having improper cross-hatching. The replacement drawings submitted herewith are believed to correct these informalities.

Accordingly, Applicants respectfully request that the Examiner withdraw the objections to the drawings.

Rejections under 35 U.S.C. §102

The Examiner has rejected claims 1, 4, 11, 15, 17, 18, 21, 26 and 27 under 35 U.S.C. §102(a) as being anticipated by U.S. Patent No. 7,458,419 to Nold, et al. (“Nold”).

However, the Examiner has also indicated that previously-pending claim 2 includes allowable subject matter. Accordingly, claim 1 is currently amended to include the subject matter of previously-pending claim 2. Consequently, claim 1 and its dependent claims 11, 17 and 18 are now believed to be patentable. Accordingly, Applicants respectfully request that the Examiner withdraw the §102 rejection of claim 1 and its dependent claims 11, 17 and 18.
Claim 4 has also been amended to include the allowable subject matter. Consequently, claim 4 is now believed to be patentable. Accordingly, Applicants respectfully request that the Examiner withdraw the §102 rejection of claim 4.

Claim 15 has also been amended to include the allowable subject matter. Consequently, claim 15 is now believed to be patentable. Accordingly, Applicants respectfully request that the Examiner withdraw the §102 rejection of claim 15.

The Examiner has also indicated that previously-pending claim 23 includes allowable subject matter. Accordingly, claim 21 is currently amended to include the subject matter of previously-pending claim 23. Consequently, claim 21 and its dependent claims 26 and 27 are now believed to be patentable. Accordingly, Applicants respectfully request that the Examiner withdraw the §102 rejection of claim 21 and its dependent claims 26 and 27.

Rejections under 35 U.S.C. §103

The Examiner has rejected claims 5 and 16 under 35 U.S.C. §103(a) as being unpatentable over Nold. However, claims 5 and 16 depend from claim 1 which, as described above, is now believed to be patentable. Accordingly, Applicants respectfully request that the Examiner withdraw the §103 rejection of claims 5 and 16.

The Examiner has also rejected claim 14 under 35 U.S.C. §103(a) as being unpatentable over Nold in view of U.S. Patent No. 2,835,329 to True. However, claim 14 depends from claim 1 which, as described above, is now believed to be patentable. Accordingly, Applicants respectfully request that the Examiner withdraw the §103 rejection of claim 14.

The Examiner has also rejected claims 29, 31 and 32 under 35 U.S.C. §103(a) as being unpatentable over Nold in view of U.S. Patent No. 6,230,557 to Cigleneč, et al. However, the Examiner has also indicated that previously-pending claim 30 includes allowable subject matter. Accordingly, claim 29 is currently amended to include the subject matter of previously-pending claim 30. Consequently, claim 29 and its dependent claims 31 and 32 are now believed to be
patentable. Accordingly, Applicants respectfully request that the Examiner withdraw the §103 rejection of claim 29 and its dependent claims 31 and 32.

New Claims

The Examiner has also indicated that previously-pending claim 22 includes allowable subject matter. Accordingly, new claim 33 is currently introduced and includes the subject matter of previously-pending claims 21 and 22. Consequently, claim 33 and its dependent claims 34 and 35 are believed to be patentable.
Conclusion

All matters set forth in the Office Action have been addressed. Accordingly, it is believed that all claims are in condition for allowance. Favorable consideration and an indication of allowability are respectfully requested.

Applicants further note that no fee is believed required for consideration of this Amendment. However, if any fee is necessary, Applicants hereby authorize payment of such fee from Deposit Account No. 19-0610 (19.0438).

Should the Examiner deem that an interview with Applicants’ undersigned attorney would expedite consideration, the Examiner is invited to call the undersigned attorney at the telephone number indicated below.

Respectfully submitted,

/Dave R. Hofman/
Dave R. Hofman, Reg. No. 55,272
Attorney for Applicants

Dated: March 20, 2009

Schlumberger Oilfield Services
200 Gillingham Lane
MD 200-9
Sugar Land, Texas 77478
Telephone: (281) 285-8809
Facsimile: (281) 285-8821
Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.
Office Action Summary

Application No. 11/616,583
Applicant(s) ZAZOVSKY ET AL.
Examiner SEAN D. ANDRISH
Art Unit 3672

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply to the finality notice within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)☐ Responsive to communication(s) filed on 22 October 2008.
2a)☐ This action is FINAL.
2b)☒ This action is non-final.
3)☐ Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)☒ Claim(s) 1, 2, 4 - 11, 14 - 18, and 20 - 32 is/are pending in the application.
 4a) Of the above claim(s) ______ is/are withdrawn from consideration.
5)☐ Claim(s) ______ is/are allowed.
6)☒ Claim(s) 1, 4, 5, 11, 14 - 18, 20, 21, 26, 27, 29, 31, and 32 is/are rejected.
7)☒ Claim(s) 2, 6 - 10, 22 - 25, 28, and 30 is/are objected to.
8)☐ Claim(s) ______ are subject to restriction and/or election requirement.

Application Papers

9)☐ The specification is objected to by the Examiner.
10)☐ The drawing(s) filed on 22 October 2008 is/are: a)☐ accepted or b)☒ objected to by the Examiner.

 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11)☐ The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)☐ Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a)☐ All
 b)☐ Some * c)☐ None of:
 1. ☐ Certified copies of the priority documents have been received.
 2. ☐ Certified copies of the priority documents have been received in Application No. ______.
 3. ☐ Copies of the certified copies of the priority documents have been received in this National Stage
 application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1)☒ Notice of References Cited (PTO-892)
2)☐ Notice of Draftsperson’s Patent Drawing Review (PTO-948)
3)☒ Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date ______.
4)☐ Interview Summary (PTO-413)
 Paper No(s)/Mail Date ______.
5)☐ Notice of Informal Patent Application
6)☐ Other: ______.
DETAILED ACTION

Drawings

1. The drawings are objected to as failing to comply with 37 CFR 1.84(p)(4) because reference character “‘222’” has been used to designate both “first guard inlet” and "first guard probe" and reference character "224" has been used to designate both “second guard inlet” and “second guard probe” as recited in paragraph 0081.

2. The drawings are objected to because reference characters should not be handwritten (see replacement drawings) and Figs. 5 and 6 are too dark to differentiate between components of the claimed invention. Also, appropriate cross-hatching should be used to clearly indicate the materials of which the various elements of the claimed invention are made. For instance, the cross-hatching used to illustrate packer 154 in Fig. 12 describes it as being made of metal. If packer 154 is composed of elastomeric material it should be illustrated with the cross-hatching commonly used to illustrate elastomeric material. Examiner recommends a careful review of all the figures to correct these errors. Corrected drawing sheets in compliance with 37 CFR 1.121(d) are required in reply to the Office action to avoid abandonment of the application. Any amended replacement drawing sheet should include all of the figures appearing on the immediate prior version of the sheet, even if only one figure is being amended. The figure or figure number of an amended drawing should not be labeled as “amended.” If a drawing figure is to be canceled, the appropriate figure must be removed from the replacement sheet, and where necessary, the remaining figures must be renumbered and appropriate changes made to the brief description of the several views of the drawings for consistency. Additional replacement sheets may be necessary to show the renumbering of the remaining figures. Each drawing sheet
submitted after the filing date of an application must be labeled in the top margin as either "Replacement Sheet" or "New Sheet" pursuant to 37 CFR 1.121(d). If the changes are not accepted by the examiner, the applicant will be notified and informed of any required corrective action in the next Office action. The objection to the drawings will not be held in abeyance.

Claim Rejections - 35 USC § 102

3. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

4. Claims 1, 4, 11, 15, 17, 18, 21, 26, and 27 are rejected under 35 U.S.C. 102(a) as being anticipated by Nold, III et al. (7,458,419).

Regarding claims 1 and 11, Nold, III et al. discloses a fluid sampling system comprising: a sample inlet (1332); a first guard inlet and a second guard inlet (intake passageways 1334b, separated by tubular dividers 1335r), the first and second guard inlets are passageways 1334b located on opposite sides of the sample inlet (1332); a cleanup flowline and an evaluation flowline (column 6, lines 40 – 52); an inlet packer (1331); an inner packer (1335); a first packer segment and a second packer segment (that portion of the tubular divider 1335 located between adjacent tubular divider ribs 1335r associated with each of said first and said second packer segments) (Figs. 13 and 14; column 13, line 34 - column 14, line 7). Examiner notes that the tubular divider (1335) is functionally equivalent to a packer because it seals against the wellbore wall to prevent contaminated fluid from mixing with the virgin fluid.
Regarding claim 4, Nold, III et al. further disclose a sample inlet packer (1331); a first guard inlet packer defined by the portion of the tubular divider (1335) located between adjacent tubular divider ribs (1335r) associated with said first packer segment, adjacent tubular divider ribs (1335r) and the portion of packer (1331) located between adjacent tubular divider ribs (1335r) and a second guard inlet packer having the same construction as the first guard inlet packer (Fig. 14).

Regarding claims 15 and 21, Nold, III et al. further disclose an exterior face of the inlet packer (531) includes a guard channel (535u) (Fig. 10A).

Regarding claim 17, Nold, III et al. further disclose a wireline tool (Fig. 2A; column 1, lines 33 - 36).

Regarding claim 18, Nold, III et al. further disclose a downhole tool (column 4, lines 11 - 13).

Regarding claims 26 and 27, Nold, III et al. further disclose channel inserts (a plurality of parallel linear components) mechanically coupled to the packer (531) to form grate-like or screen-like assemblies in the channel (535u) (column 9, lines 2 – 2 – 6).

Claim Rejections - 35 USC § 103

5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

6. Claims 5 and 16 is rejected under 35 U.S.C. 103(a) as being unpatentable over Nold, III et al. Nold, III et al. discloses all of the limitations of the above claim(s) except for the
dimensions of the packer and the sample inlet. The optimization of proportions in a prior art
device is a design consideration within the skill of the art. In re Reese, 290 F.2d 839, 129 USPQ
402 (CCPA 1961).

7. Claims 14 and 20 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nold,
III et al. in view of True (2,835,329). Nold, III discloses all of the limitations of the above
claim(s) except for a packer comprising reinforcement material. True teaches a packer
comprising internal reinforcements (column 4, lines 2 - 5) to provide a sealing member of
increased resistance to rupture. It would have been considered obvious to one of ordinary skill in
the art at the time the invention was made to have combined the apparatus as disclosed by Nold,
III with the reinforcement material as taught by True to provide a sealing member of increased
resistance to rupture.

8. Claims 29, 31, and 32 are rejected under 35 U.S.C. 103(a) as being unpatentable over
Nold, III et al. in view of Ciglence et al. (6,230,557).

Regarding claim 29, Nold, III discloses all of the limitations of the above claim(s) except
for a stabilizing blade. Ciglence et al. teaches a stabilizing blade (316) (Fig. 3, column 6, lines
17 - 18) for frictional engagement with a wall of the wellbore. It would have been considered
obvious to one of ordinary skill in the art at the time the invention was made to have combined
the apparatus as disclosed by Nold, III with the stabilizing blade of Ciglence et al. for frictional
engagement with a wall of the wellbore.

Regarding claims 31 and 32, Nold, III in view of Ciglence et al. discloses all of the
limitations of the above claim(s) except for a sample inlet having an oval-shaped cross-sectional
profile and the second profile dimension. The dimensions of the sample inlet and the dimension
of the second profile lack criticality and therefore the optimization of proportions in a prior art
device is a design choice consideration within the skill in the art. *In re Reese*, 290 F.2d. 839, 129
USPQ 402 (CCPA 1961).

Allowable Subject Matter

9. Claims 2, 6 – 10, 22 – 25, 28, and 30 are objected to as being dependent upon a rejected
base claim, but would be allowable if rewritten in independent form including all of the
limitations of the base claim and any intervening claims.

Regarding claims 2 and 6 - 10, the closest prior art fails to teach or suggest a fluid
sampling system including a sample inlet, a first guard inlet, and a second guard inlet are
operable independently of one another.

Regarding claim 22, the closest prior art fails to teach or suggest the arrangement of
sample inlet, central ring, first guard ring, second guard ring, first link section, and a second link
section as recited in the claim.

Regarding claims 23 - 25, the closest prior art fails to teach or suggest a first wing section
and a second wing section connected to and extending away from the guard ring section.

Regarding claims 28 and 30, the closest prior art fails to teach or suggest a pivotable
connection between the probe assembly, the sample inlet, the guard inlets, and the inlet extension
mechanism.

Response to Arguments

10. Applicant's arguments with respect to claims 1, 4, 5, 11, 14 - 18, 20, 21, 26, 27, 29, 31,
and 32 have been considered but are moot in view of the new ground(s) of rejection.
Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to SEAN D. ANDRISH whose telephone number is (571)270-3098. The examiner can normally be reached on Mon - Fri, 7:30am - 5:00pm, Alternate Fri off, EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s supervisor, David Bagnell can be reached on (571) 272-6999. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Kenneth Thompson/
Primary Examiner
Art Unit 3672

SDA
12/16/2008
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Zazovsky, et al. $ Confirmation No.: 2776
Serial No.: 11/616,583 $ Group Art Unit: 3672
Filed: December 27, 2006 $ Examiner: Andrish, Sean D.
For: Formation Fluid Sampling $ Attorney Docket No.: 19.0438
Apparatus and Methods $

Commissioner for Patents
Mail Stop Amendment
P.O. Box 1450
Alexandria, VA 22313-1450

RESPONSE TO NON-FINAL OFFICE ACTION MAILED AUGUST 11, 2008

In response to the Non-Final Office action of August 11, 2008, please amend the above-identified application as follows:

Amendments to the Specification begin on page 2 of this paper.

Amendments to the Claims are reflected in the listing of claims which begins on page 3 of this paper.

Amendments to the Drawings begin on page 11 of this paper and include both an attached replacement sheet and an annotated sheet showing changes.

Remarks/Arguments begin on page 12 of this paper.

An Appendix including amended drawing figures is attached following page 13 of this paper.
Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 a sample inlet;
 a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore [[axis]] axis;
 a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis;
 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid; [[and]]
 an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid;
 an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet, wherein the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet.

2. (Original) The fluid sampling system of claim 1, in which the sample inlet is provided on a sample inlet assembly including a sample inlet extension mechanism, the first guard inlet is provided on a first guard inlet assembly including a first guard inlet extension mechanism, and the second guard inlet is provided on a second guard inlet assembly including a second guard inlet extension mechanism, wherein the sample inlet, first guard inlet, and second guard inlet extension mechanisms are operable independently of one another.
3. (Canceled).

4. (Currently Amended) A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 a sample inlet;
 a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore [[axis]] axis;
 a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis;
 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid; and
 an evaluation flowline fluidly connected to the sample inlet for collecting virgin [[fluid]] fluid;
 a sample inlet packer completely surrounding an outer periphery of the sample inlet;
 a first guard inlet packer completely surrounding an outer periphery of the first guard inlet; and
 a second guard inlet packer completely surrounding an outer periphery of the second guard inlet;
 in which the sample inlet packer, first guard inlet packer, and second guard inlet packer are respectively formed as an inlet packer segment, first guard packer segment, and second guard packer segment of a composite packer having a substantially contiguous outer periphery.

5. (Original) The fluid sampling system of claim 4, in which the composite packer outer periphery has an oval shape.
6. (Original) The fluid sampling system of claim 2, in which the sample inlet assembly has a diameter, and wherein the first and second guard inlet assemblies are longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.

7. (Original) The fluid sampling system of claim 2, in which at least one of the guard inlet assemblies has a diameter, and wherein the at least one guard inlet assembly is longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.

8. (Original) The fluid sampling system of claim 2, in which the sample inlet assembly, first guard inlet assembly, and second guard inlet assembly are provided on a stabilizing blade of a drilling tool.

9. (Original) The fluid sampling system of claim 2, in which the sample inlet is azimuthally offset from the first and second guard inlets.

10. (Original) The fluid sampling system of claim 2, further comprising a third guard inlet fluidly connected to the clean up flowline.

11. (Original) The fluid sampling system of claim 1, in which the sample inlet, first guard inlet, and second guard inlet are integrally provided on a single probe assembly including an inlet extension mechanism.

12. (Canceled).

13. (Canceled).
14. (Currently Amended) The fluid sampling system of claim 13, in which the first and second packer segments further comprise a reinforcement material.

15. (Currently Amended) A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 a sample inlet;
 a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis;
 a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis;
 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid;
 an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid; and
 an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet;
 in which an exterior face of the inlet packer includes a guard channel.

16. (Original) The fluid sampling system of claim 1, in which the sample inlet has an oval-shaped cross-sectional profile, with a major axis perpendicular to the wellbore axis and a minor axis parallel to the wellbore axis.

17. (Original) The fluid sampling system of claim 1, in which the system is associated with a wireline tool.
18. (Original) The fluid sampling system of claim 1, in which the system is associated with a drilling tool.

19. (Canceled).

20. (Previously Presented) A probe assembly for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 an inlet extension mechanism;
 a sample inlet coupled to the inlet extension mechanism;
 a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis;
 a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis;
 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid;
 an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid; and
 an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet;
 in which the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet, wherein the first and second packer segments further comprise a reinforcement material.
21. (Previously Presented) A probe assembly for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
an inlet extension mechanism;
a sample inlet coupled to the inlet extension mechanism;
a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis;
a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis; and
an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet;
in which an exterior face of the inlet packer includes a guard channel.

22. (Previously Presented) The probe assembly of claim 21, in which the guard channel includes a central ring section completely surrounding an outer periphery of the sample inlet, a first guard ring section completely surrounding an outer periphery of the first guard inlet, a second guard ring section completely surrounding an outer periphery of the second guard inlet, a first link section extending between the central ring section and the first guard ring section, and a second link section extending between the central ring section and the second guard ring section.

23. (Previously Presented) The probe assembly of claim 21, in which the guard channel includes a guard ring section completely surrounding an outer periphery of the first guard inlet and at least a first wing section connected to and extending away from the guard ring section.
24. (Original) The probe assembly of claim 23, in which the guard channel further includes a second wing section connecting to and extending away from the guard ring section.

25. (Original) The probe assembly of claim 23, further including a second guard channel having a guard ring section completely surrounding an outer periphery of the second guard inlet and at least a first wing section connected to and extending away from the guard ring section.

26. (Previously Presented) The probe assembly of claim 21, in which the guard channel is defined by a channel insert coupled to the inlet packer.

27. (Original) The probe assembly of claim 26, in which the channel insert is mechanically coupled to the inlet packer.

28. (Previously Presented) The probe assembly of claim 21, in which the sample inlet, first guard inlet, and second guard inlet are pivotably coupled to the inlet extension mechanism.

29. (Original) A downhole tool connected to a drill string positioned in a wellbore penetrating a subterranean formation along a wellbore axis, the tool comprising:
 a drilling collar having at least one stabilizing blade defining a blade axis;
 an inlet extension mechanism housed within the stabilizing blade; and
 a probe assembly coupled to the inlet extension mechanism, the probe assembly comprising:
 a sample inlet having a mouth portion with a first profile dimension in a direction parallel to the blade axis and a second profile dimension in a direction perpendicular to the blade axis, in which the first profile dimension is greater than the second profile dimension;
 an inner packer completely surrounding an outer periphery of the sample inlet;
a guard inlet extending completely around an outer periphery of the inner packer;

and

an outer packer completely surrounding an outer periphery of the guard inlet.

30. (Original) The downhole tool of claim 29, in which the probe assembly is pivotally coupled to the inlet extension mechanism.

31. (Original) The downhole tool of claim 29, in which the mouth portion has a generally oval shape cross-sectional profile, with the first profile dimension comprising a major axis and the second profile dimension comprising a minor axis.

32. (Original) The downhole tool of claim 29, in which the second profile dimension is less than approximately 3.5 inches.
Amendments to the Drawings:

The attached sheet of drawings includes changes to Figs. 4 and 5. This sheet, which includes Figs. 3-6, replaces the original sheet including Figs. 3-6. In Figs. 4 and 5, previously referenced element 44 has been corrected as element 32.

Attachment: Replacement Sheet
REMARKS

Claims 1-18 and 20-32 were previously pending in the present application. Claims 3, 12, and 13 are currently canceled without prejudice or disclaimer, and no claims are currently added. Consequently, claims 1, 2, 4-11, 14-18, and 20-32 are currently pending in the present application.

Reconsideration of the present application in light of the above amendments and the following remarks is respectfully requested.

Rejections under 35 U.S.C. §102

The Examiner has rejected claims 1, 9, and 10 under 35 U.S.C. §102(b) as being anticipated by U.S. Patent Application No. 2004/0000433 to Hill, et al. (“Hill”). However, the Examiner has also indicated that previously-pending claim 13 includes allowable subject matter. Accordingly, claim 1 is currently amended to include the subject matter of previously-pending claims 12 and 13. Consequently, claim 1 and its dependent claims 9 and 10 are now believed to be patentable over Hill. Accordingly, Applicants respectfully request that the Examiner withdraw the §102 rejection of claim 1 and its dependent claims 9 and 10.

Rejections under 35 U.S.C. §103

The Examiner has rejected claims 2, 3, 6, 7, 11, and 16 under 35 U.S.C. §103(a) as being unpatentable over Hill. However, the Examiner has also indicated that previously-pending claim 13 includes allowable subject matter. Accordingly, claim 1 is currently amended to include the subject matter of previously-pending claims 12 and 13. Consequently, claim 1 and its dependent claims 2, 3, 6, 7, 11, and 16 are now believed to be patentable over Hill. Accordingly, Applicants respectfully request that the Examiner withdraw the §103 rejection of claims 2, 3, 6, 7, 11, and 16.
Conclusion

All matters set forth in the Office Action have been addressed. Accordingly, it is
believed that all claims are in condition for allowance. Favorable consideration and an early
indication of allowability are respectfully requested.

Applicants further note that no fee is believed required for consideration of this
Amendment. However, if any fee is necessary, Applicants hereby authorize payment of such fee
from Deposit Account No. 19-0610 (19.0438).

Should the Examiner deem that an interview with Applicants’ undersigned attorney
would expedite consideration, the Examiner is invited to call the undersigned attorney at the
telephone number indicated below.

Respectfully submitted,

/Dave R. Hofman/
Dave R. Hofman, Reg. No. 55,272
Attorney for Applicants

Dated: October 22, 2008

Schlumberger Oilfield Services
200 Gillingham Lane
MD 200-9
Sugar Land, Texas 77478
Telephone: (281) 285-8809
Facsimile: (281) 285-8821
Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.
Office Action Summary

Application No. 11/616,583
Applicant(s) ZAZOVSKY ET AL.
Examiner SEAN D. ANDRISH
Art Unit 3672

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply to the Office within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)☐ Responsive to communication(s) filed on 03 July 2008.
2a)☐ This action is FINAL. 2b)☒ This action is non-final.
3)☐ Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)☒ Claim(s) 1 - 18 and 20 - 32 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
5)☒ Claim(s) 4, 5, 15, and 20 - 32 is/are allowed.
6)☐ Claim(s) 1 - 3, 6 - 12, and 16 - 18 is/are rejected.
7)☐ Claim(s) 13 and 14 is/are objected to.
8)☐ Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9)☐ The specification is objected to by the Examiner.
10)☒ The drawing(s) filed on 05 May 2008 is/are: a)☐ accepted or b)☒ objected to by the Examiner.

 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11)☐ The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)☐ Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a)☐ All b)☐ Some * c)☐ None of:

 1. ☐ Certified copies of the priority documents have been received.
 2. ☐ Certified copies of the priority documents have been received in Application No. ________.
 3. ☐ Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

 * See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1)☐ Notice of References Cited (PTO-892) 4)☐ Interview Summary (PTO-413)
2)☐ Notice of Draftsman's Patent Drawing Review (PTO-948)
 Paper No(s)/Mail Date ________.
3)☐ Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date ________.
4)☐ Notice of Information Disclosure Statement(s) (PTO-832)
5)☐ Notice of Informal Patent Application
6)☐ Other: ________.
DETAILED ACTION

Drawings

1. The drawings are objected to as failing to comply with 37 CFR 1.84(p)(5) because they include the following reference character(s) not mentioned in the description: “44”.

2. The drawings are objected to as failing to comply with 37 CFR 1.84(p)(4) because reference characters "32" and "44" have both been used to designate “blade” as illustrated in Figs. 4 and 5 and reference characters "14" and "17" have both been used to designate "wellbore".

3. The drawings are objected to as failing to comply with 37 CFR 1.84(p)(4) because reference character “222” has been used to designate both “first guard inlet” and “first guide probe” and reference character “224” has been used to designate both “second guard inlet” and “second guide probe” as disclosed in paragraph 0081.

4. The drawings are objected to because reference characters should not be handwritten (see replacement drawings) and appropriate cross-hatching should be used to clearly distinguish between the elements illustrated in Figs. 5 and 6. Corrected drawing sheets in compliance with 37 CFR 1.121(d) are required in reply to the Office action to avoid abandonment of the application. Any amended replacement drawing sheet should include all of the figures appearing on the immediate prior version of the sheet, even if only one figure is being amended. The figure or figure number of an amended drawing should not be labeled as “amended.” If a drawing figure is to be canceled, the appropriate figure must be removed from the replacement sheet, and where necessary, the remaining figures must be renumbered and appropriate changes made to the brief description of the several views of the drawings for consistency. Additional replacement
sheets may be necessary to show the renumbering of the remaining figures. Each drawing sheet submitted after the filing date of an application must be labeled in the top margin as either “Replacement Sheet” or “New Sheet” pursuant to 37 CFR 1.121(d). If the changes are not accepted by the examiner, the applicant will be notified and informed of any required corrective action in the next Office action. The objection to the drawings will not be held in abeyance.

Claim Rejections - 35 USC § 102

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

 A person shall be entitled to a patent unless –

 (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

6. Claims 1, 9, and 10 are rejected under 35 U.S.C. 102(b) as being anticipated by Hill et al. (2004/0000433).

 Regarding claims 1 and 9, Hill et al. discloses a fluid sampling system comprising: a sample inlet (68) including a first guard inlet (68) positioned adjacent to and azimuthally offset from the sampling inlet (68); a second guard inlet (68) positioned adjacent sampling inlet (68) in an opposite direction and azimuthally offset from the first guard inlet; a cleanup flowline (70) fluidly connected to the first and second guard inlets (68); and an evaluation flowline (70) fluidly connected to the sample inlet (68) (Figs. 8A - 8C; paragraphs 0070 – 0072 and 0074). Examiner notes that any of the plurality of fluid inlets (68) as illustrated in Figs. 8A and 8B can be considered the sampling inlet and two fluid inlets located adjacent to the sampling inlet and in opposite directions relative to the sampling inlet can be considered the guard inlets. The flowline (70) is considered both the cleanup flowline and the evaluation flowline because valves (72) can
be positioned such that fluid passing through fluid monitoring system (53) can be directed to
either the sample chamber (74) or to the pump (35) to disperse the fluid to the wellbore.

Regarding claim 10, Hill et al. further discloses a third guard inlet (68) fluidly connected
to the clean up flowline (70) (Figs. 8A – 8C).

Claim Rejections - 35 USC § 103

7. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in
section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are
such that the subject matter as a whole would have been obvious at the time the invention was made to a person
having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the
manner in which the invention was made.

8. Claims 2, 3, 6, 7, 11, and 16 – 18 are rejected under 35 U.S.C. 103(a) as being
unpatentable over Hill et al.

Regarding claims 2 and 3, Hill et al. discloses all of the limitations of the above claim(s)
as illustrated in Figs. 8A – 8C except for a sample inlet extension mechanism and a sample inlet
packer, a first guard inlet extension mechanism and a first guard inlet packer, and a second guard
inlet extension mechanism and a second guard inlet packer, wherein the sample inlet, first guard
inlet, and second guard inlet extension mechanisms are operable independently of one another
and each of the respective packers completely surrounds an outer periphery of its associated
inlet.

Hill et al. (Fig. 5) teaches an inlet assembly including an inlet extension mechanism
(piston 33) in another embodiment of the fluid sampling mechanism (Fig. 5) to extend the intake
section of the probe into contact with the wellbore wall and further teaches a packer (31)
completely surrounding an outer periphery of a fluid inlet section (32, 34). It would have been
considered obvious to one of ordinary skill in the art at the time the invention was made to have combined the system as disclosed by Hill et al. in Figs. 8A – 8C with the inlet extension mechanism and a packer completely surrounding an outer periphery of a sampling probe as taught by Hill et al. in Fig. 5 to extend the intake section of the probe into contact with the wellbore wall and to sealingly engage the wellbore wall around the sampling probe. The inlet extension mechanism of Fig. 5 of Hill et al. can be used with any of the fluid inlets as disclosed in Figs. 8A - 8C of Hill et al.

Regarding claims 6 and 7, Hill et al. discloses all of the limitations of the above claim(s) except for the distance between the sample inlet assembly and the guard inlet assemblies. The optimization of proportions in a prior art device is a design consideration within the skill of the art. In re Reese, 290 F.2d 839, 129 USPQ 402 (CCPA 1961).

Regarding claim 11, Hill et al. further discloses the sample inlet (68), the first guard inlet (68), and the second guard inlet (68) are integrally provided on a single probe assembly (downhole tool 10b) (Figs. 8A – 8C).

Regarding claim 16, Hill et al. discloses all of the limitations of the above claim(s) except for a sample inlet having an oval-shaped cross-sectional profile. The dimensions of the sample inlet lack criticality and therefore the optimization of proportions in a prior art device is a design consideration within the skill of the art. In re Reese, 290 F.2d 839, 129 USPQ 402 (CCPA 1961).

Regarding claims 17 and 18, Hill et al. further discloses the system is associated with a downhole wireline tool (Fig. 3; page 2, paragraph 0022)
9. Claim 8 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hill et al. in view of Ciglenec et al. (6,230,557). Hill et al. discloses all of the limitations of the above claim(s) except for the sample inlet assembly, the first guard inlet assembly, and the second guard inlet assembly positioned on a stabilizing blade. Ciglenec et al. teaches multiple probes (330) positioned on a stabilizing blade (Fig. 3; column 6, lines 11 - 24) for frictional engagement with the wellbore wall to prevent rotation of the inlet assemblies relative to the wellbore wall. It would have been considered obvious to one of ordinary skill in the art, at the time the invention was made, to have modified the structure as disclosed by Hill et al. with the stabilizing blades as taught by Ciglenec et al. for frictional engagement with the wellbore wall to prevent rotation of the inlet assemblies relative to the wellbore wall.

10. Claim 12 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hill et al. in view of Lee et al. (6,585,045). Hill et al. discloses all of the limitations of the above claim(s) except for an inlet packer completely surrounding the sample inlet, the first guard inlet, and the second guard inlet. Lee et al. teaches a single packer (502) completely surrounding the outer peripheries of three sampling ports (224A, 224B, 224C) (Fig. 5A; column 7, lines 54 - 58) to create a seal with the wellbore wall. It would have been considered obvious to one of ordinary skill in the art, at the time the invention was made, to have modified the structure as disclosed by Hill et al. with the packer as taught by Lee et al. to create a seal with the wellbore wall.

Allowable Subject Matter

11. Claims 4, 5, 15, and 20 – 32 are allowed.

12. Claims 13 and 14 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base
claim and any intervening claims. The closest prior art fails to teach or suggest a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet.

Response to Arguments

13. Applicant's arguments with respect to claims 1 – 3, 6 - 14, and 16 - 18 have been considered but are moot in view of the new ground(s) of rejection.

14. Applicant’s arguments, see amendment, filed 03 July 2008, with respect to claims 4, 5, 15, and 20 - 28 have been fully considered and are persuasive. The rejection of claims 15, 21, 24, 25, and 28 - 31 and the objection to claims 5, 20, 22, 23, 26, and 27 has been withdrawn.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to SEAN D. ANDRISH whose telephone number is (571)270-3098. The examiner can normally be reached on Mon - Fri, 7:30am - 5:00pm, Alternate Fri off, EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s supervisor, David Bagnell can be reached on (571) 272-6999. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.
Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Kenneth Thompson/
Primary Examiner
Art Unit 3672

SDA
8/7/2008
RESPONSE TO OFFICE ACTION DATED JANUARY 3, 2008

Commissioner for Patents
Alexandria, VA 22313-1450

Dear Commissioner:

This paper is submitted in response to a non-final Office action dated January 3, 2008. The fee for a one-month extension of time is submitted herewith. The one-month extension period ended on May 3, 2008, which is a Saturday. Accordingly, the response is timely filed today with only a one-month extension. Please amend the application as follows:

Amendments to the Specification begin on page 2 of this paper.

Amendments to the Claims are reflected in the listing of the claims, which begins on page 5 of this paper.

Amendments to the Drawings begin on page 13 of this paper and include an attached replacement sheet.

Remarks/Arguments begin on page 14 of this paper.
This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 a sample inlet;
 a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis
 a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis;
 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid; and
 an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid.

2. (Original) The fluid sampling system of claim 1, in which the sample inlet is provided on a sample inlet assembly including a sample inlet extension mechanism, the first guard inlet is provided on a first guard inlet assembly including a first guard inlet extension mechanism, and the second guard inlet is provided on a second guard inlet assembly including a second guard inlet extension mechanism, wherein the sample inlet, first guard inlet, and second guard inlet extension mechanisms are operable independently of one another.

3. (Original) The fluid sampling system of claim 2, in which the sample probe assembly includes a sample inlet packer completely surrounding an outer periphery of the sample inlet, the first guard inlet assembly includes a first guard inlet packer completely surrounding an outer periphery of the first guard inlet, and the second guard inlet assembly includes a second guard inlet packer completely surrounding an outer periphery of the second guard inlet.
4. (Currently Amended) The fluid sampling system of claim 3, for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:

 a sample inlet;
 a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis;
 a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis;
 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid; and
 an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid
 a sample inlet packer completely surrounding an outer periphery of the sample inlet;
 a first guard inlet packer completely surrounding an outer periphery of the first guard inlet; and
 a second guard inlet packer completely surrounding an outer periphery of the second guard inlet;

 in which the sample inlet packer, first guard inlet packer, and second guard inlet packer are respectively formed as an inlet packer segment, first guard packer segment, and second guard packer segment of a composite packer having a substantially contiguous outer periphery.

5. (Original) The fluid sampling system of claim 4, in which the composite packer outer periphery has an oval shape.

6. (Original) The fluid sampling system of claim 2, in which the sample inlet assembly has a diameter, and wherein the first and second guard inlet assemblies are longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.

7. (Original) The fluid sampling system of claim 2, in which at least one of the guard inlet assemblies has a diameter, and wherein the at least one guard inlet assembly is longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.
8. (Original) The fluid sampling system of claim 2, in which the sample inlet assembly, first guard inlet assembly, and second guard inlet assembly are provided on a stabilizing blade of a drilling tool.

9. (Original) The fluid sampling system of claim 2, in which the sample inlet is azimuthally offset from the first and second guard inlets.

10. (Original) The fluid sampling system of claim 2, further comprising a third guard inlet fluidly connected to the clean up flowline.

11. (Original) The fluid sampling system of claim 1, in which the sample inlet, first guard inlet, and second guard inlet are integrally provided on a single probe assembly including an inlet extension mechanism.

12. (Original) The fluid sampling system of claim 11, in which an inlet packer completely surrounds outer peripheries of the sample inlet, first guard inlet, and second guard inlet.

13. (Original) The fluid sampling system of claim 12, in which the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet.

14. (Original) The fluid sampling system of claim 13, in which the first and second packer segments further comprise a reinforcement material.
15. (Currently Amended) The fluid sampling system of claim 12, for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:

- a sample inlet;
- a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis
- a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis;
- at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid;
- an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid;
- and

an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet;

in which an exterior face of the inlet packer includes a guard channel.

16. (Original) The fluid sampling system of claim 1, in which the sample inlet has an oval-shaped cross-sectional profile, with a major axis perpendicular to the wellbore axis and a minor axis parallel to the wellbore axis.

17. (Original) The fluid sampling system of claim 1, in which the system is associated with a wireline tool.

18. (Original) The fluid sampling system of claim 1, in which the system is associated with a drilling tool.

19. (Canceled).
20. (Currently Amended) The probe assembly of claim 19, for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:

an inlet extension mechanism;

a sample inlet coupled to the inlet extension mechanism;

a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis;

a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis;

at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid;

an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid;

and

an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet;

in which the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet, wherein the first and second packer segments further comprise a reinforcement material.
21. (Currently Amended) The probe assembly of claim 19, for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:

an inlet extension mechanism;

a sample inlet coupled to the inlet extension mechanism;

a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis;

a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis; and

an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet;

in which an exterior face of the inlet packer includes a guard channel.

22. (Currently Amended) The probe assembly of claim 21, in which the guard channel includes a central ring section completely surrounding an outer periphery of the sample inlet, a first guard ring section completely surrounding an outer periphery of the first guard inlet, a second guard ring section completely surrounding an outer periphery of the second guard inlet, a first link section extending between the central ring section and the first guard ring section, and a second link section extending between the central ring section and the second guard ring section.

23. (Currently Amended) The probe assembly of claim 21, in which the guard channel includes a guard ring section completely surrounding an outer periphery of the first guard inlet and at least a first wing section connected to and extending away from the guard ring section.

24. (Original) The probe assembly of claim 23, in which the guard channel further includes a second wing section connecting to and extending away from the guard ring section.
25. (Original) The probe assembly of claim 23, further including a second guard channel having a guard ring section completely surrounding an outer periphery of the second guard inlet and at least a first wing section connected to and extending away from the guard ring section.

26. (Currently Amended) The probe assembly of claim 49, in which the guard channel is defined by a channel insert coupled to the inlet packer.

27. (Original) The probe assembly of claim 26, in which the channel insert is mechanically coupled to the inlet packer.

28. (Currently Amended) The probe assembly of claim 49, in which the sample inlet, first guard inlet, and second guard inlet are pivotably coupled to the inlet extension mechanism.
29. (Original) A downhole tool connected to a drill string positioned in a wellbore penetrating a subterranean formation along a wellbore axis, the tool comprising:
 a drilling collar having at least one stabilizing blade defining a blade axis;
 an inlet extension mechanism housed within the stabilizing blade; and
 a probe assembly coupled to the inlet extension mechanism, the probe assembly comprising:
 a sample inlet having a mouth portion with a first profile dimension in a direction parallel to the blade axis and a second profile dimension in a direction perpendicular to the blade axis, in which the first profile dimension is greater than the second profile dimension;
 an inner packer completely surrounding an outer periphery of the sample inlet;
 a guard inlet extending completely around an outer periphery of the inner packer; and
 an outer packer completely surrounding an outer periphery of the guard inlet.

30. (Original) The downhole tool of claim 29, in which the probe assembly is pivotably coupled to the inlet extension mechanism.

31. (Original) The downhole tool of claim 29, in which the mouth portion has a generally oval shape cross-sectional profile, with the first profile dimension comprising a major axis and the second profile dimension comprising a minor axis.

32. (Original) The downhole tool of claim 29, in which the second profile dimension is less than approximately 3.5 inches.
Amendments to the Drawings:

The attached sheet of drawings includes changes to FIGS. 3 and 4. More specifically, FIG. 3 is amended to remove reference numeral 44 and FIG. 4 is amended to refer to remove reference numerals 66a, 66b and replace them with reference numerals 46a, 46b. This sheet, which includes FIGS. 3-6, replaces the original sheet including FIGS. 3-6.

Attachment: Replacement Sheet
REMARKS

This paper is filed in response to a non-final Office action dated January 3, 2008. Claims 1-18 and 19-32 are presented for consideration. Applicants appreciate the Examiner’s indication that claims 4, 20, 22-23, and 26-27 are allowable, but for their dependency on a rejected base claim. In view of the amendments presented herein, reconsideration and allowance of all pending claims are respectfully requested.

1. Objections to the Drawings, Specification, and Claims

The Office action objects to the drawings for including reference numerals not found in the written description. More specifically, the Office action objects to the reference numeral 44 appearing in FIG. 3 and the reference numerals 66a and 66b appearing in FIG. 4. A replacement drawing sheet is submitted herewith that removes these reference numerals from those figures. FIG. 4 is further amended to include reference numerals 46a and 46b, which are referred to in original paragraph [0067]. Accordingly, applicants respectfully request entry of the replacement drawing sheet and withdrawal of the drawing objection.

The Office action also asserts two objections to the specification. First, the Office action notes that both the stabilizer blade and the drill collar are identified reference numeral 101 in paragraph [0073] of the specification. Applicants have amended the specification to now refer to the drill collar with reference numeral 103 to be consistent with FIG. 7. Accordingly, paragraphs [0073] and [0074] are amended herein to consistently refer to “drill collar 103.” Additionally, the Office action requests clarification of text in paragraphs [0087] and [0089] regarding the “3 5 inches” dimension appearing therein. In response, applicants note that the proper dimension is 3.5 inches, and the paragraphs are reproduced herein to provide a clean copy. The 3.5 inch dimension is consistent with claim 32 and paragraph [0038] of the specification. The confusion appears to arise from the resolution applicants’ used when the application was scanned for submission to the Office. Consideration and entry of these amendments to the specification are respectfully requested.

The Office further objects to claims 22-23 and 26 for failing to provide proper antecedent basis for the term “the guard channel.” Claims 22, 23, and 26 are amended herein to depend
from claim 21, which provides proper antecedent basis for “the guard channel.” Accordingly, reconsideration and withdrawal of this ground of objection are respectfully requested.

2. Claim Rejections Based on Nonstatutory Double Patenting

Claims 1-3, 6-13, 15-16, 19, 21, and 28-31 stand rejected for nonstatutory obviousness-type double patenting over claims 1-18 of U.S. Patent No. 6,230,557 (“Ciglenec”) in view of U.S. Patent Application Publication No. 2004/000043 (“Hill”). While independent claim 19 has been canceled, each of remaining independent claims 1 and 29 is patentably distinct from claims 1-18 of Ciglenec as modified by Hill, and therefore the double patenting rejection must be withdrawn.

The Office action fails to apply the proper analysis for determining a nonstatutory obviousness-type double patenting rejection. When properly asserted, a double patenting rejection will focus on the claims of the applied reference and compare those claims to the subject that is claimed in the present application. The focus of the rejection should be on the claims, since the judicially created doctrine of nonstatutory double patenting is “grounded in public policy so as to prevent the unjustified or improper timewise extension of the right to exclude granted by a patent.” (MPEP, Section 804) As noted in the MPEP, Section 804 (page 800-21 of Rev. 5, Aug. 2006), an obviousness-type double patenting rejection is proper “when the claimed subject matter is not patentably distinct from the subject matter claimed in a commonly owned patent.” (underlining added) Section 804 of the MPEP further reinforces that the Examiner is to focus on the claims of the applied reference, in stating:

Any obviousness-type double patenting rejection should make clear:

(A) The differences between the inventions defined by the conflicting claims - a claim in the patent compared to a claim in the application; and

(B) The reasons why a person of ordinary skill in the art would conclude that the invention defined in the claims at issue is anticipated by or would have been an obvious variation of the invention defined in a claim in the patent. (emphasis added)

Accordingly, a properly stated double-patenting rejection should focus on the language used in the claims of both the present application and the patent being applied.
The current Office action, however, largely ignores the specific language used in the claims of the present application and the applied patent, and instead appears to rely primarily on the disclosure of Ciglenec, rather than its claims. Furthermore, the Office action then proposes to modify elements not found in the Ciglenec claims with the disclosure of Hill. More specifically, the complete text of the Examiner’s rationale for asserting the obviousness-type double patenting rejection is provided on page 4 of the Office action, which states:

Claims 1-3, 6-13, 15-16, 19, 21, and 28-31 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-18 of Ciglenec, U.S. Patent No. 6,230,557 in view of Hill, et al., PG Publication 2004/000043. ‘557 reference has common assignee Schlumberger Oilfield Services, and the claims 1-18 generally referring [sic] to the probe, actuator and stabilizer configuration as shown in Fig’s. [sic] 2-4. Further, it would be obvious to a person of ordinary skill to modify ‘557 with the sample and contamination inlets and lines as disclosed in the Hill reference.

This analysis is inaccurate, incomplete, and entirely deficient to support a proper obviousness-type double patenting rejection. As noted above, a proper analysis will identify the differences between the claims of a patent and the claims of the application. Here, the Examiner refers to the disclosure of the Ciglenec patent and only broadly alleges the content of its claims. Similarly, the Examiner makes no reference to the language of the claims presented in the application. At no point does the Examiner identify the differences between the claims of the present application and the Ciglenec patent claims, as noted in the MPEP. Furthermore, the Examiner’s allegation as to the content of the claims of Ciglenec is misleading, inasmuch as it suggests that Claims 1-18 of Ciglenec recite all of the elements shown in Figs. 2-4. To the contrary, there are several elements shown in Figs. 2-4 that are not recited in claims 1-18 of Ciglenec, not the least of which is that Figs. 2-4 illustrate a device having three probes, while claims 1-18 of Ciglenec specify only “a probe.” The Examiner’s reference to the specification of Ciglenec further suggests that the specification, rather than the content of the claims, has been used to support the double patenting rejection. Reliance on the specification, however, is wholly inappropriate and does not serve the public policy on which the obviousness-type double patenting is based.
Notwithstanding the foregoing, the nonstatutory double patenting rejection asserted in the Office action is deficient when considered on its merits, as the invention defined in the claims of the present application is nonobvious over the claims of the Ciglenec patent as modified by Hill. Turning first to independent claim 1 of the present application, that claim specifies subject matter that is nonobvious over claims 1-18 of Ciglenec as modified by Hill. More specifically, claim 1 specifies three inlets, namely a sample inlet, first guard inlet, and second guard inlet, and specific relative positions thereof, such that the sample inlet is disposed between the first and second guard inlets. Claim 1 of the present application further specifies that the sample inlet is fluidly connected to an evaluation flowline and the guard inlets are fluidly connected to a cleanup flowline. Claims 1-18 of Ciglenec, however, specify only “a probe” rather than the three inlets of claim 1, and consequently do not specify relative positions between three inlets, since only one probe is identified in the claims. Claims 1-18 of Ciglenec further omit any indication as to what type of flowline to which the probe is fluidly connected. The proposed modification by Hill does not supply the deficiencies of claims 1-18 of Ciglenec, since the resulting combination will still only have one probe, and therefore independent claim 1, as well the claims depending therefrom, is patentable over the proposed modification of claims 1-18 of Ciglenec.

Turning to independent claim 19 of the present application, that claim has been canceled. Accordingly, the nonstatutory double patenting rejection as it applies to claim 19 should be withdrawn.

Turning to independent claim 29 of the present application, that claim specifies subject matter that is nonobvious over claims 1-18 of Ciglenec as modified by Hill. More specifically, claim 29 specifies a sample inlet having a mouth portion with a first profile dimension in a direction parallel to the blade axis and a second profile dimension in a direction perpendicular to the blade axis, in which the first profile dimension is greater than the second profile dimension. Claims 1-18 of Ciglenec, however, specify a probe without identifying specific profile dimension of a mouth of the probe. The proposed modification by Hill does not supply the deficiencies of claims 1-18 of Ciglenec, since Hill discloses a sample inlet with a circular cross-section, and therefore the proposed combination does not disclose or suggest a mouth opening with different profile dimension as specified in claim 29 of the present application. Accordingly, independent
claim 29, as well as claims 30-32 depending directly or indirectly thereon, is patentable over the proposed modification of claims 1-18 of Ciglenee.

Furthermore, claims 1-18 of Ciglenee specify several elements not found in the claims of the present application. More specifically, each of claims 1-18 of Ciglenee specifies at least the following elements not found in claim 1 of the present application: 1) “a tubular mandrel”; 2) a stabilizer element that is “positioned about the tubular mandrel for relative rotation between the stabilizer element and the tubular mandrel”; and 3) means connected to the stabilizer element for frictional engagement with a wall of the wellbore, such frictional engagement preventing the stabilizer element from rotating relative to the wellbore wall.” The presence of these elements in claims 1-18 of Ciglenee, which are not found in claims of the present application, further indicates that the claims of the present application will not extend the right to exclude afforded under Ciglenee.

The nonstatutory double patenting rejection asserted in the Office is improper and/or deficient for the reasons stated above, and therefore must be withdrawn.

3. Claim Rejections Based on the Art

Claims 1-3, 6-8, and 10-11 stand rejected under 35 U.S.C. 103(a) as obvious over Ciglenee and Hill. Applicants traverse this ground of rejection.

Independent claim 1, as well as claims 2-3, 6-14, and 16-18 depending directly or indirectly therefrom, specifies a fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein. The system includes a sample inlet, a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis, and a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis. At least one cleanup flowline is fluidly connected to the first and second guard inlets for passing contaminated fluid, and an evaluation flowline is fluidly connected to the sample inlet for collecting virgin fluid. The proposed combination of art fails to properly disclose or suggest a
fluid sampling system including the combination of a sample inlet and two guard inlets, wherein the guard inlets are disposed on opposite sides of the sample inlet as specified in claim 1.

Instead, Ciglenec discloses a formation pressure measurement tool having three redundant probes 320. Each probe 320 includes an expandable packer 322 and a conduit 326 defining an open end 328. A filter valve 330 is positioned in the central opening defined by the packer 322 and about the open end 328 of the conduit 326. An expandable bellows 320 is provided for expanding the packer 322 and is operatively coupled to a hydraulic fluid system by hydraulic flow lines 336, 338. The hydraulic system is also operatively coupled to the filter valve 330. A sensor 344 is provided in each conduit 326 to measure a property of the formation fluid. As noted in Col. 8, lines 30-34, the sensors 344 “need only be placed in contact with the formation fluid at some point in the fluid flow line 326, such as at a measuring junction which permits the sensor to acquire the desired formation parameter data.” According to Ciglenec, the use of a plurality of probes provides:

…redundancy and increases the likelihood that at least one of the probes will effect a proper seal and obtain a successful pressure test (or permit the acquisition of other formation data). By utilizing two, three, or even four probes next to each other per elongated rib 314, the coverage of the investigated wellbore wall surface is expanded. Thus, chances for a good contact are further increased. (Col. 8, line 62 to Col. 9, line 3)

Ciglenec further discloses that the system is adaptable for obtaining formation fluid samples when connected to sample chambers. Specifically, Ciglenec teaches that sample chambers may be connected to the flow line 326 via isolation valve 360, flow line bus 364, and a main isolation valve 362. Ciglenec purports that these features are shown in Fig. 6, however the isolation valve 360 and main isolation valve 362 are not shown. Thus, Ciglenec fails to disclose or suggest a fluid sampling system having the combination of a sample inlet and two guard inlets positioned on opposite sides of the sample inlet, as specified in claim 1.

Hill fails to supply the deficiencies noted above with respect to Ciglenec. Instead, Hill discloses a fluid sampling apparatus having a single interior channel 32 for receiving a formation fluid sample and a single exterior channel 34 for passing contaminated fluid. Hill does not disclose or suggest two separate guard inlets positioned on opposite sides of the sample inlet. The proposed combination of Ciglenec and Hill, therefore, fails to disclose or suggest the
combination of a sample inlet, a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis, and a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis, as specified in claim 1. Accordingly, claim 1, as well as claims 2-3, 6-14, and 16-18 depending directly or indirectly therefrom, is patentable over the proposed combination of Ciglenee and Hill.

Furthermore, the modification of Ciglenee with Hill as proposed in the Office action would render Ciglenee unsatisfactory for its intended purpose, and therefore the proposed combination is improper. (MPEP 2143.01, sub-section V) Ciglenee discloses the use of multiple probes for carrying out the same function, and specifically teaches the advantage of this redundancy to more reliably place a probe in sufficiently sealed contact with the wellbore. The proposed modification under Hill, however, would arbitrarily replace two of the redundant probes with probes having a different function, thereby destroying the advantage of redundancy specifically taught in Ciglenee. Consequently, the proposed combination is improper and therefore the rejection of claims 1-3, 6-8, and 10-11 based on Ciglenee and Hill must be withdrawn.

Claim 15 as presented herein is rewritten in independent form. Independent claim 15 includes all of the elements of original claim 1, and therefore is patentable over the cited prior art for the same reasons presented above.

Claims 19, 29 and 31 stand rejected under 35 U.S.C. 103(a) as obvious over Ciglenee in view of U.S. Patent No. 6,585,045 ("Lee"). Applicants note that claim 19 is canceled. Furthermore, Applicants traverse this ground of rejection with respect to claims 29 and 31.

Independent claim 29, as well as claims 30-32 depending directly or indirectly therefrom, specifies a downhole tool connected to a drill string positioned in a wellbore penetrating a subterranean formation along a wellbore axis. The tool includes a drilling collar having at least one stabilizing blade defining a blade axis and an inlet extension mechanism housed within the stabilizing blade. A probe assembly is coupled to the inlet extension mechanism and includes a sample inlet having a mouth portion with a first profile dimension in a direction parallel to the blade axis and a second profile dimension in a direction perpendicular to the blade axis, in which
the first profile dimension is greater than the second profile dimension. An inner packer completely surrounds an outer periphery of the sample inlet, a guard inlet extends completely around an outer periphery of the inner packer, and an outer packer completely surrounds an outer periphery of the guard inlet. The proposed combination of art fails to properly disclose or suggest a downhole tool having a mouth portion of a sample inlet with a first profile dimension in a first direction that is larger than a second profile dimension in a second, perpendicular direction, as specified in independent claim 29.

Instead, Ciglenec discloses a probe 320 having an annular packer 322 that defines a cylindrical opening 324 through which formation fluid is drawn. As a cylinder, the profile dimensions of the opening 324 are identical, and therefore Ciglenec fails to disclose or suggest different first and second profile dimensions. Lee fails to supply the deficiency of Ciglenec, and therefore claim 29, as well as claims 30-32 depending directly or indirectly therefrom, are patentable over the proposed combination of Ciglenec and Lee.

The rejection as stated is further deficient for improperly asserting that the ribs 314 of Ciglenec are responsive to the guard inlet specified in claim 29. As generally understood by one of ordinary skill in the art, an inlet provides a conduit for fluid. Accordingly, the “guard inlet” of claim 29 must be capable of at least permitting fluid flow therethrough. The Examiner, however, asserts that ribs 314 disclosed in Ciglenec, which project from the sides of the drill string, are responsive to the claimed “guard inlet.” The ribs 314, however, are solid and do not permit fluid flow therethrough. Accordingly, Ciglenec fails to disclose or suggest the “guard inlet” specified in claim 29.

Independent claim 21 specifies a probe assembly for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein. The probe assembly includes an inlet extension mechanism, a sample inlet coupled to the inlet extension
mechanism, a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis, and a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis. At least one cleanup flowline is fluidly connected to the first and second guard inlets for passing contaminated fluid, and an evaluation flowline is fluidly connected to the sample inlet for collecting virgin fluid.

An inlet packer completely surrounds the outer peripheries of the sample inlet, first guard inlet, and second guard inlet, and an exterior face of the inlet packer includes a guard channel. The proposed combination of Ciglenec, Lee, and Nold fails to disclose or suggest an evaluation flowline fluidly connected to the sample inlet and at least one cleanup flowline fluidly connected to the first and second guard inlets. Accordingly, claim 21 is patentable over the proposed combination.

4. **Claims Reciting Subject Matter Indicated as Allowable**

Claims 4 and 20 presented herein are rewritten in independent form to include the base and any intervening claims. The Office action indicates that these claims recited allowable subject matter. Accordingly, reconsideration and allowance of these claims are respectfully requested.

5. **Conclusion**

It is submitted that the present application is in good and proper form for allowance. A favorable action on the part of the Examiner is respectfully solicited.

If, in the opinion of the Examiner, a telephone conference would expedite prosecution of the subject application, the Examiner is invited to call the undersigned attorney.
The Patent Office is hereby authorized to credit any overpayment or charge any deficiency in the fees filed, asserted to be filed, or which should have been filed herewith to our Deposit Account No. 50-3629.

Dated: May 5, 2008

Respectfully submitted,

By /Brent E. Matthias/
Brent E. Matthias, Reg. No. 41,974
MILLER, MATTHIAS & HULL
One North Franklin Street
Suite 2350
Chicago, Illinois 60606
(312) 977-9903
Attorney for Applicant
Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.
Office Action Summary

Application No. 11/616,583

Applicant(s) ZAZOVSKY ET AL.

Examiner JOHN M. DEBOER

Art Unit 4112

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If no period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)☒ Responsive to communication(s) filed on 27 December 2006.

2a)☐ This action is FINAL.

2b)☒ This action is non-final.

3)☐ Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)☒ Claim(s) 1-31 is/are pending in the application.

4a) Of the above claim(s) ____ is/are withdrawn from consideration.

5)☐ Claim(s) _____ is/are allowed.

6)☒ Claim(s) 1-3, 6-13, 15, 16, 19, 21, 24, 25 and 28-31 is/are rejected.

7)☒ Claim(s) 4, 20, 22, 23, 26 and 27 is/are objected to.

8)☐ Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9)☐ The specification is objected to by the Examiner.

10)☒ The drawing(s) filed on 04 May 2007 is/are: a)☐ accepted or b)☒ objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11)☐ The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)☐ Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)☐ All b)☐ Some * c)☐ None of:

1. ☐ Certified copies of the priority documents have been received.

2. ☐ Certified copies of the priority documents have been received in Application No. _____.

3. ☐ Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1)☒ Notice of References Cited (PTO-892)

2)☐ Notice of Draftsman’s Patent Drawing Review (PTO-948)

3)☒ Information Disclosure Statement(s) (PTO/SB/08)

4)☐ Interview Summary (PTO-413)

Paper No(s)/Mail Date ______.

5)☐ Notice of Informal Patent Application

6)☐ Other: ______.
DETAILED ACTION

Drawings

1. The drawings are objected to as failing to comply with 37 CFR 1.84(p)(5) because they include the following reference character(s) not mentioned in the description: references 44 and 66 a/b shown on Fig. 3 and 4, respectively, were not disclosed within the specification.

Corrected drawing sheets in compliance with 37 CFR 1.121(d), or amendment to the specification to add the reference character(s) in the description in compliance with 37 CFR 1.121(b) are required in reply to the Office action to avoid abandonment of the application. Any amended replacement drawing sheet should include all of the figures appearing on the immediate prior version of the sheet, even if only one figure is being amended. Each drawing sheet submitted after the filing date of an application must be labeled in the top margin as either “Replacement Sheet” or “New Sheet” pursuant to 37 CFR 1.121(d). If the changes are not accepted by the examiner, the applicant will be notified and informed of any required corrective action in the next Office action. The objection to the drawings will not be held in abeyance.

Specification

2. The disclosure is objected to because of the following informalities: P[0073], [0074] contain stabilizer blade 101 of drill collar 101; please clarify if these items are the same, or provide separate references.
3. P[0087], [0089] provide a description containing “3 5 inches.” As a result of typographical or scanning error, examiner is unsure what applicant intends. Applicant should ensure and clarify the disclosure should be: 3.5, 35, 3-5, or other. Appropriate correction is required.

Claim Objections

4. Claims 22-23, & 26 are objected to because of the following informalities: these claims refer to claim 19 and the element “the guard channel,” which is not present in claim 19. Appropriate correction is required.

5. Claims 4, 20, 22-23, 26-27 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

Double Patenting

6. The nonstatutory double patenting rejection is based on a judicially created doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the unjustified or improper timewise extension of the “right to exclude” granted by a patent and to prevent possible harassment by multiple assignees. A nonstatutory obviousness-type double patenting rejection is appropriate where the conflicting claims are not identical, but at least one examined application claim is not patently distinct from the reference claim(s) because the examined application claim is either anticipated by, or would have been obvious over, the reference claim(s). See, e.g., In re Berg, 140 F.3d 1428, 46 USPQ2d 1226 (Fed. Cir. 1998); In re Goodman, 11 F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); In re Longi, 759 F.2d 887, 225 USPQ 645 (Fed. Cir. 1985); In re Van Ornum, 686 F.2d 937, 214 USPQ 761 (CCPA 1982); In re Vogel, 422 F.2d 438, 164 USPQ 619 (CCPA 1970); and In re Thorington, 418 F.2d 528, 163 USPQ 644 (CCPA 1969).

A timely filed terminal disclaimer in compliance with 37 CFR 1.321(c) or 1.321(d) may be used to overcome an actual or provisional rejection based on a nonstatutory double patenting ground provided the conflicting application or patent either is shown to
be commonly owned with this application, or claims an invention made as a result of activities undertaken within the scope of a joint research agreement.

Effective January 1, 1994, a registered attorney or agent of record may sign a terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with 37 CFR 3.73(b).

7. Claims 1-3, 6-13, 15-16, 19, 21, and 28-31 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-18 of Ciglenec, U.S. Patent No. 6,230,557 in view of Hill, et al., PG Publication 2004/000043. ‘557 reference has common assignee Schlumberger Oilfield Services, and the claims 1-18 generally referring to the probe, actuator and stabilizer configuration as shown in Fig’s. 2-4. Further, it would be obvious to a person of ordinary skill to modify ‘557 with the sample and contamination inlets and lines as disclosed in the Hill reference.

Claim Rejections - 35 USC § 103

8. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claim 1 is an independent claim with the following limitations:
A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated, fluid therein, comprising: a sample inlet (557, Bottom hole assembly (BHA) 100 comprises stabilizer 300, capable of attaining downhole information [col. 4, 40-50]; there is open end 328b (or inlet 326b) for formation fluid flow [see Fig. 2, and col. 8, 1-10]);

![Diagram of the fluid sampling system](image)

326a, 328a

326b, 328b

326c, 328c

a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis (557, one inlet 326a has resilient packer member 322a longitudinally above middle inlet 322b; see Figs. 2 & 3),
a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis ('557, a second inlet 326c has a resilient packer member 322c longitudinally below the middle inlet; see Figs. 2 & 3);
at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid (Hill, flowline 40 connected for contaminated fluid, P[0051];

an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid (Hill, flowline 38 connected for virgin fluid; P[0051], and Fig. 9).

Reference ‘557 teaches most of the limitations of claim 1, but does not explicitly teach separate cleanup flowline and evaluation flowline. Instead, Hill discloses flowlines 38 & 40 used for evaluation and contamination, respectively. It would be obvious to a person of ordinary skill in the art at the time of the invention to provide for separate flowlines within the '557 device. Both references relate to use of a probe for determining subterranean formation parameters, and it is desirous to have a probe that can discriminate between virgin and contaminated fluids. Samples analyzed with contaminants are problematic because they can yield incorrect and varied results. This information can lead to improperly concluded decisions about which formations are best suited for capital investment for the extraction of hydrocarbons.

Claim 2 depends upon rejected claim 1 above with the additional limitations: the sample inlet is provided on a sample inlet assembly including a sample inlet extension mechanism ('557, inlets are on actuator 318 and bellows 340 system [see Figs. 7 & 8]),
the first guard inlet is provided on a first guard inlet assembly including a first guard inlet extension mechanism (highest/upper inlet (see Fig. 2 for reference) has its own bellows 340 extension),

and the second guard inlet is provided on a second guard inlet assembly including a second guard inlet extension mechanism (lowest/lower inlet (see Fig. 2 for reference) has its own bellows 340 extension),

wherein the sample inlet, first guard inlet, and second guard inlet extension mechanisms are operable independently of one another (the inlets 328 operate with bellows 340 and actuator 318, which are part of the selectively pressurizing hydraulic fluid systems [see claim 9]).

Claim 3 depends upon claim 2 rejected above with the additional limitations:
sampling system of claim 2, in which the sample probe assembly includes a sample inlet packer completely surrounding an outer periphery of the sample inlet (‘557, resilient annual packer 322(b) [Figs. 4-7]),

the first guard inlet assembly includes a first guard inlet packer completely surrounding an outer periphery of the first guard inlet (resilient annual packer 322(a) [see Figs. 4-7],
and the second guard inlet assembly includes a second guard inlet packer completely surrounding an outer periphery of the second guard inlet (resilient annual packer 322(c) [see Figs. 4-7]).

Claim 6 depends upon claim 2 rejected above with the additional limitations:
claim 2, in which the sample inlet assembly has a diameter ('557, middle inlet 328c inherently has a diameter),

and wherein the first and second guard inlet assemblies are longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter (inlets 328a and 328c longitudinally spaced greater then the inlet diameter from middle inlet 328b [see Fig. 3]).

Claim 7 depends upon claim 2 rejected above with the additional limitations:
in which at least one of the guard inlet assemblies has a diameter ('557, high inlet 328a or low inlet 328c inherently have a diameter; see Figs. 2 & 3),

and wherein at least one guard inlet assembly is longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter (inlets 328a and 328c longitudinally spaced greater then the inlet diameter from middle inlet 328b [see Fig. 3]).
Claim 8 depends upon claim 2 rejected above with the additional limitation:
in which the sample inlet assembly, first guard inlet assembly, and second guard inlet
assembly are provided on a stabilizing blade of a drilling tool (‘557, inlets are on plurality
of ribs 314 or stabilizer blades 316; see Fig. 3).

Claim 10 depends upon claim 2 rejected above with the additional limitation:
further comprising a third guard inlet fluidly connected to the clean up flowline. It would
be obvious to supply the apparatus with an additional inlet. Multiple inlets provide the
capability for redundancy in case of mechanical failure. They also provide the ability to
compare sample data taken from the same vicinity within the wellbore. The ability to
compare sample data is important because it can be used to validate the results
obtained.

Claim 11 depends upon claim 1 rejected above with the additional limitation:
in which the sample inlet, first guard inlet, and second guard inlet are integrally provided
on a single probe assembly including an inlet extension mechanism (‘557, single bottom
hole assembly 100 comprises stabilizer 300, with actuator system 318).

10. Claims 9, 12-13, & 16 are rejected under 35 U.S.C. 103(a) as being unpatentable
over ‘557 and Hill as applied to the claims above, and further in view of Lee, et al., US
Patent 6,585,045 ("045").
Claim 9 depends upon rejected claim 2 above, but with the additional limitation:
in which the sample inlet is azimuthally offset from the first and second guard inlets
(‘045, see orientation on fig. 4c (compared to 5a)).

Examiner takes the position that "azimuthally offset" is interpreted to mean the
middle/sample inlet is not on the same long axis as the other two inlets. The ‘557 and
Hill references do not specifically teach an offset configuration or orientation. Instead,
‘045 teaches such a configuration/orientation of probe inlets. It would be obvious to a
person of ordinary skill at the time of the invention to modify the probe configuration of
‘557 and Hill as is taught by ’045 (see Fig. 4c versus 5a). These references relate to
use of a probe for determining subterranean formation parameters, and it is desirous to
have a probe that can discriminate between virgin and contaminated fluids. Samples
analyzed with contaminants are problematic because they can yield incorrect and varied
results. This information can lead to improperly concluded decisions about which
formations are best suited for capital investment for the extraction of hydrocarbons.

Further, multiple port configuration allows for multiple point-testing while the drill string is
in one position. In order to take multiple tests with a single port, the probe (hence drill
string) has to be moved several times, which adds cost to the operation and can slow
production.

Claim 12 depends upon claim 11 rejected above with the additional limitation:
in which an inlet packer completely surrounds outer peripheries of the sample inlet, first guard inlet, and second guard inlet (‘045, selectively expandable packer 502 surrounds ports 224 A-C; see Fig. 5A).

Claim 13 depends upon claim 12 rejected above with the additional limitation:
in which the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet (‘045, extendable pad members 220A-C are disposed independently upon the ports 224A-C; col. 7, 19-60).

Claim 16 depends upon claim 1 rejected above with the additional limitation:
in which the sample inlet has an oval-shaped cross-sectional profile, with a major axis perpendicular to the wellbore axis and a minor axis parallel to the wellbore axis (‘045, ports 216A-C have various shapes other then circular; col. 9, 31-40).

11. Claim 15 is rejected under 35 U.S.C. 103(a) as being unpatentable over ‘557, Hill, & ‘045 as applied to claim 15, and further in view of Nold, III et al., PG Publication 2006/0076132 (“Nold”).

Claim 15 depends upon claim 12 rejected above with the additional limitation:
in which an exterior face of the inlet packer includes a guard channel (Nold, channel 534 in packer face [see Fig. 6]).
The modified apparatus of '557, Hill, and '045 does not explicitly teach a packer face having a guard channel. However, Nold teaches a channel 534 in a packer face. It would be obvious to a person of ordinary skill at the time of the invention to provide a packer that includes a channel. These references relate to use of a probe for determining subterranean formation parameters, and it is desirous to have a probe that can discriminate between virgin and contaminated fluids. Samples analyzed with contaminants are problematic because they can yield incorrect and varied results. This information can lead to improperly concluded decisions about which formations are best suited for capital investment for the extraction of hydrocarbons. Further, providing a guard channel provides the ability for the equipment to extend its mean time between failure. The longer the probe lasts without the need to be replaced, the lower the overall operating costs incurred when production is halted in order to perform maintenance.

12. Claims 19, 29, & 31 are rejected under 35 U.S.C. 103(a) as being unpatentable over '557 as applied to the claims above, and further in view of '045.

Claim 19 is an independent claim with the following limitations:
A probe assembly for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising: an inlet extension mechanism ('557, actuator 318, bellows 340 equivalent to an extension mechanism);
a sample inlet coupled to the inlet extension mechanism (‘557, middle inlet 326(b) [see Figs. 2 & 9];

a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis (‘557, 3 probes (w/inlets 326a-c and bellows 340a-c) are coupled to actuator mechanism 318; see Figs. 2 & 9, and col. 7, 5-20);

a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis (‘557, 3 probes (w/inlets 326a-c and bellows 340a-c) are coupled to actuator mechanism 318; see Figs. 2 & 9, and col. 7, 5-20);

and an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet (‘045, expandable packer 502 surrounds periphery [see fig. 5a]).

Reference ‘557 teaches all of the limitations of claim 19, except ‘557 does not explicitly teach about a “completely surrounding [packer].” Instead, ‘045 discloses expandable packer 502. It would be obvious to a person of ordinary skill in the art at the time of the invention to modify the device of ‘557 with a packer around the peripheries of the probe
inlets. Both references relate to use of a probe for determining subterranean formation parameters, and it is desirous to have a probe that can discriminate between virgin and contaminated fluids. Samples analyzed with contaminants are problematic because they can yield incorrect and varied results. This information can lead to improperly concluded decisions about which formations are best suited for capital investment for the extraction of hydrocarbons. Further, the use of an expandable packer to separate regions within a wellbore is well known in the art. It is desirous to have the ability to further distinguish an area deemed for testing versus the other areas within a wellbore because this leads to greater accuracy in sample analysis.

Claim 29 is an independent claim with the following limitations:

downhole tool connected to a drill string positioned in a wellbore penetrating a subterranean formation along a wellbore axis, the tool comprising: a drilling collar having at least one stabilizing blade defining a blade axis ('557, stabilizer element 308 with stabilizer 300 and stabilizer blade 316; fig. 3),

an inlet extension mechanism housed within the stabilizing blade ('557, stabilizer 300 has actuator 318 and bellows 340);

and a probe assembly coupled to the inlet extension mechanism, the probe assembly comprising: a sample inlet having a mouth portion with a first profile dimension in a direction parallel to the blade axis and a second profile dimension in a direction
perpendicular to the blade axis, in which the first profile dimension is greater than the second profile dimension (‘557, 3 probes (w/ inlets 326a-c and bellows 340a-c) are coupled to actuator mechanism 318; see Figs. 2 & 9, and col. 7, 5-20);

an inner packer completely surrounding an outer periphery of the sample outlet (‘557, single packer 322b around inlet 328b);

a guard inlet extending completely around an outer periphery of the inner packer (ribs 314 extend around packer 322 [see Fig. 5]);

and an outer packer completely surrounding an outer periphery of the guard inlet (‘045, expandable packer 502 surrounds periphery; see fig. 5a).

The motivation to combine ‘045 and ‘557 is as stated for claim 19 above.

Claim 31 depends upon claim 29 rejected above with the additional limitation: in which the mouth portion has a generally oval shape cross-sectional profile, with the first profile dimension comprising a major axis and the second profile dimension comprising a minor axis (‘045, ports 216A-C have various shapes other than circular; col. 9, 31-40).
13. Claim 21 is rejected under 35 U.S.C. 103(a) as being unpatentable over ‘557 & ‘045 as applied to claim 21, and further in view of Nold.

Claim 21 depends upon claim 19 rejected above with the additional limitation:
in which an exterior face of the inlet packer includes a guard channel (Nold, channel 534 in packer face; see Fig. 6).

The modified apparatus of ‘557 and ‘045 does not explicitly teach a packer face having a guard channel. However, Nold teaches a channel 534 in a packer face. It would be obvious to a person of ordinary skill at the time of the invention to provide a packer that includes a channel. These references relate to use of a probe for determining subterranean formation parameters, and it is desirous to have a probe that can discriminate between virgin and contaminated fluids. Samples analyzed with contaminants are problematic because they can yield incorrect and varied results. This information can lead to improperly concluded decisions about which formations are best suited for capital investment for the extraction of hydrocarbons. Further, providing a guard channel provides the ability for the equipment to extend its mean time between failure. The longer the probe lasts without the need to be replaced, the lower the overall operating costs incurred when production is halted in order to perform maintenance.

Claim 28 depends upon claim 19 rejected above with the additional limitation:
in which the sample inlet, first guard inlet, and second guard inlet are pivotably coupled
to the inlet extension mechanism (‘501, col. 6, 8-20, pivot mechanism [see also Fig. 4]).

References ‘557 and ‘045 do not explicitly teach an extended probe assembly that
 pivots. However, a pivot mechanism on a probe is well known in the art. For example,
the disclosure of ‘501 teaches a probe with a pivot mechanism. It would be obvious to a
person of ordinary skill in the art at the time of the invention to modify the probe device
of ‘557 and ‘045 with a pivot mechanism. These references relate to use of a probe
for determining subterranean formation parameters, and it is desirous to have a probe
that can discriminate between virgin and contaminated fluids. Samples analyzed with
contaminants are problematic because they can yield incorrect and varied results. This
information can lead to improperly concluded decisions about which formations are best
suited for capital investment for the extraction of hydrocarbons. Further, the ability to
pivot the probe provides an operator the capability to test more then one point while the
drill string is in a single position. Without the pivot ability, if the operator puts the drill
string in the wrong spot, the drill string will have to be continually repositioned until it
reaches the desired location.

Claim 30 depends upon claim 29 rejected above with the additional limitation:
in which the probe assembly is pivotably coupled to the inlet extension mechanism
(‘501, col. 6, 8-20, pivot mechanism [see also Fig. 4]).
The motivation to combine is as stated above for claim 28.

15. The prior art made of record and **not** relied upon are considered pertinent to applicant's disclosure.

 1) Del Campo, et al., PG Publication 20060042793
 2) Zazovsky, et al., PG Publication 2006/0000603
 3) Del Campo, et al., US Patent 7,178,591
 4) Follini, et al., US Patent 6,729,399
 6) Dussan V., et al., US Patent 5,279,153
 7) Hallmark, US Patent 4,339,948

The references mentioned above are deemed useful for background information as applicable to understanding applicant’s invention (NOTE: not all sources may be prior art as per 102, nor would they be used for such a purpose).

Any inquiry concerning this communication or earlier communications from the examiner should be directed to JOHN M. DEBOER whose telephone number is (571)270-3652. The examiner can normally be reached on M-Thur, alt. Friday (7:30 - 5:00 est).
If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, David Bruce can be reached on 571-272-2487. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

John M. DeBoer
Examiner
Art Unit 4112

/Jmd
/John M. DeBoer/
Examiner, Art Unit 4112

/David V Bruce/
Supervisory Patent Examiner, Art Unit 4112
Fax message

To: United States Patent and Trademark Office
cc:
From: Matthias Abrell
Subject: Preliminary Amendment

Appl. No.: 11/616,583
Applicant: Zazovsky, et al.
Filed: 27/DEC/2006
TC/A.U.: 3672
Examiner: N/A
Docket No.: 19.0438
Customer No.: 23718
Title: Formation fluid sampling apparatus and methods

Location
Fax 571-273-8300
Date 10/31/07
Pages (inc) 9

Confirmation No.: 2776

NOTICE OF CONFIDENTIALITY
This information contained in and transmitted with this facsimile is:
1. SUBJECT TO THE ATTORNEY-CLIENT PRIVILEGE;
2. ATTORNEY WORK PRODUCT; OR
3. CONFIDENTIAL
It is intended only for use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please immediately notify us by telephone, and return the original message to us at the above address via the U.S. Postal Service. Thank you.

If you do not receive all pages, please call: (281) 285-8821
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Appl. No.: 11/616,583
Applicant: Zazovsky, et al.
Filed: 27/DEC/2006
TC/A.U.: 3672
Examiner: N/A

Docket No.: 19.0438
Customer No.: 23718
Title: Formation fluid sampling apparatus and methods

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

PRELIMINARY AMENDMENT

Sir:

Prior to examination, please amend the present application as follows:

Amendments to the Claims are in the listing of claims which begin on page 2 of this paper.

Remarks/Arguments begin on page 8 of this paper.
Listing of Claims:

Please amend the claims as follows without prejudice. No new matter has been added by way of these amendments.

1. A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 a sample inlet;
 a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis
 a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis;
 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid; and
 an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid.

2. The fluid sampling system of claim 1, in which the sample inlet is provided on a sample inlet assembly including a sample inlet extension mechanism, the first guard inlet is provided on a first guard inlet assembly including a first guard inlet extension mechanism, and the second guard inlet is provided on a second guard inlet assembly including a second guard inlet extension mechanism, wherein the sample inlet, first guard inlet, and second guard inlet extension mechanisms are operable independently of one another.

3. The fluid sampling system of claim 2, in which the sample probe assembly includes a sample inlet packer completely surrounding an outer periphery of the sample inlet, the first guard inlet assembly includes a first guard inlet packer completely surrounding an outer periphery of
the first guard inlet, and the second guard inlet assembly includes a second guard inlet packer completely surrounding an outer periphery of the second guard inlet.

4. The fluid sampling system of claim 3, in which the sample inlet packer, first guard inlet packer, and second guard inlet packer are respectively formed as an inlet packer segment, first guard packer segment, and second guard packer segment of a composite packer having a substantially contiguous outer periphery.

5. (Cancelled)

6. The fluid sampling system of claim 2, in which the sample inlet assembly has a diameter, and wherein the first and second guard inlet assemblies are longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.

7. The fluid sampling system of claim 2, in which at least one of the guard inlet assemblies has a diameter, and wherein the at least one guard inlet assembly is longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.

8. The fluid sampling system of claim 2, in which the sample inlet assembly, first guard inlet assembly, and second guard inlet assembly are provided on a stabilizing blade of a drilling tool.

9. The fluid sampling system of claim 2, in which the sample inlet is azimuthally offset from the first and second guard inlets.
10. The fluid sampling system of claim 2, further comprising a third guard inlet fluidly connected to the clean up flowline.

11. The fluid sampling system of claim 1, in which the sample inlet, first guard inlet, and second guard inlet are integrally provided on a single probe assembly including an inlet extension mechanism.

12. The fluid sampling system of claim 11, in which an inlet packer completely surrounds outer peripheries of the sample inlet, first guard inlet, and second guard inlet.

13. The fluid sampling system of claim 12, in which the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet.

14. (Cancelled)

15. The fluid sampling system of claim 12, in which an exterior face of the inlet packer includes a guard channel.

16. The fluid sampling system of claim 1, in which the sample inlet has an oval-shaped cross-sectional profile, with a major axis perpendicular to the wellbore axis and a minor axis parallel to the wellbore axis.
17. (Cancelled)

18. (Cancelled)

19. A probe assembly for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 an inlet extension mechanism;
 a sample inlet coupled to the inlet extension mechanism;
 a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis;
 a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis; and
 an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet.

20. The probe assembly of claim 19, in which the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet, wherein the first and second packer segments further comprise a reinforcement material.

21. The probe assembly of claim 19, in which an exterior face of the inlet packer includes a guard channel.
22. The probe assembly of claim 19, in which the guard channel includes a central ring section completely surrounding an outer periphery of the sample inlet, a first guard ring section completely surrounding an outer periphery of the first guard inlet, a second guard ring section completely surrounding an outer periphery of the second guard inlet, a first link section extending between the central ring section and the first guard ring section, and a second link section extending between the central ring section and the second guard ring section.

23. The probe assembly of claim 19, in which the guard channel includes a guard ring section completely surrounding an outer periphery of the first guard inlet and at least a first wing section connected to and extending away from the guard ring section.

24. (Cancelled)

25. (Cancelled)

26. The probe assembly of claim 19, in which the guard channel is defined by a channel insert coupled to the inlet packer.

27. The probe assembly of claim 26, in which the channel insert is mechanically coupled to the inlet packer.

28. The probe assembly of claim 19, in which the sample inlet, first guard inlet, and second guard inlet are pivotably coupled to the inlet extension mechanism.

29. A downhole tool connected to a drill string positioned in a wellbore penetrating a subterranean formation along a wellbore axis, the tool comprising:
a drilling collar having at least one stabilizing blade defining a blade axis;
an inlet extension mechanism housed within the stabilizing blade; and
a probe assembly coupled to the inlet extension mechanism, the probe assembly
comprising:
 a sample inlet having a mouth portion with a first profile dimension in a direction
 parallel to the blade axis and a second profile dimension in a direction perpendicular to
 the blade axis, in which the first profile dimension is greater than the second profile
 dimension;
 an inner packer completely surrounding an outer periphery of the sample inlet;
 a guard inlet extending completely around an outer periphery of the inner packer;
 and
 an outer packer completely surrounding an outer periphery of the guard inlet.

30. The downhole tool of claim 29, in which the probe assembly is pivotably coupled to
 the inlet extension mechanism.

31. The downhole tool of claim 29, in which the mouth portion has a generally oval
 shape cross-sectional profile, with the first profile dimension comprising a major axis and the
 second profile dimension comprising a minor axis.

32. (Cancelled)
REMARKS/ARGUMENTS

This set of claims has no more than five independent claims and no more than twenty-five total claims and thus complies with the new rule 75 (i.e., the 5/25 rule).

In view of the above, each of the presently pending claims in this application is believed to be in immediate condition for allowance. Accordingly, the Examiner is respectfully requested to pass this application to issue. Please apply any charges not covered, or any credits due to the elimination of claims, to Deposit Account 19-0610 (Reference Number 19.0438).

Date: 10/31/07

Respectfully submitted,

Mathias Abrell
Reg. No. 47,377
Schlumberger Technology Corporation
200 Gillingham Lane, MD 9
Sugar Land, TX 77478
Telephone: (281) 285-8809
Facsimile: (281) 285-8821
WHAT IS CLAIMED:

1. A fluid sampling system for retrieving a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:
 a sample inlet;
 a first guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction along the wellbore axis
 a second guard inlet positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction along the wellbore axis;
 at least one cleanup flowline fluidly connected to the first and second guard inlets for passing contaminated fluid; and
 an evaluation flowline fluidly connected to the sample inlet for collecting virgin fluid.

2. The fluid sampling system of claim 1, in which the sample inlet is provided on a sample inlet assembly including a sample inlet extension mechanism, the first guard inlet is provided on a first guard inlet assembly including a first guard inlet extension mechanism, and the second guard inlet is provided on a second guard inlet assembly including a second guard inlet extension mechanism, wherein the sample inlet, first guard inlet, and second guard inlet extension mechanisms are operable independently of one another.

3. The fluid sampling system of claim 2, in which the sample probe assembly includes a sample inlet packer completely surrounding an outer periphery of the sample inlet, the first guard inlet assembly includes a first guard inlet packer completely surrounding an outer periphery of the first guard inlet, and the second guard inlet assembly includes a second guard inlet packer completely surrounding an outer periphery of the second guard inlet.

4. The fluid sampling system of claim 3, in which the sample inlet packer, first guard inlet packer, and second guard inlet packer are respectively formed as an inlet packer segment,
first guard packer segment, and second guard packer segment of a composite packer having a substantially contiguous outer periphery.

5. The fluid sampling system of claim 4, in which the composite packer outer periphery has an oval shape.

6. The fluid sampling system of claim 2, in which the sample inlet assembly has a diameter, and wherein the first and second guard inlet assemblies are longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.

7. The fluid sampling system of claim 2, in which at least one of the guard inlet assemblies has a diameter, and wherein the at least one guard inlet assembly is longitudinally spaced from the sample inlet assembly by a distance substantially equal to or greater than the diameter.

8. The fluid sampling system of claim 2, in which the sample inlet assembly, first guard inlet assembly, and second guard inlet assembly are provided on a stabilizing blade of a drilling tool.

9. The fluid sampling system of claim 2, in which the sample inlet is azimuthally offset from the first and second guard inlets.

10. The fluid sampling system of claim 2, further comprising a third guard inlet fluidly connected to the clean up flowline.
11. The fluid sampling system of claim 1, in which the sample inlet, first guard inlet, and second guard inlet are integrally provided on a single probe assembly including an inlet extension mechanism.

12. The fluid sampling system of claim 11, in which an inlet packer completely surrounds outer peripheries of the sample inlet, first guard inlet, and second guard inlet.

13. The fluid sampling system of claim 12, in which the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet.

14. The fluid sampling system of claim 13, in which the first and second packer segments further comprise a reinforcement material.

15. The fluid sampling system of claim 12, in which an exterior face of the inlet packer includes a guard channel.

16. The fluid sampling system of claim 1, in which the sample inlet has an oval-shaped cross-sectional profile, with a major axis perpendicular to the wellbore axis and a minor axis parallel to the wellbore axis.

17. The fluid sampling system of claim 1, in which the system is associated with a wireline tool.

18. The fluid sampling system of claim 1, in which the system is associated with a drilling tool.
19. A probe assembly for use with a fluid sampling system to retrieve a formation fluid sample from a formation surrounding a wellbore extending along a wellbore axis, the formation having a virgin fluid and a contaminated fluid therein, comprising:

an inlet extension mechanism;

a sample inlet coupled to the inlet extension mechanism;

a first guard inlet coupled to the inlet extension mechanism, the first guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a first direction parallel to the wellbore axis;

a second guard inlet coupled to the inlet extension mechanism, the second guard inlet being positioned adjacent to the sample inlet and spaced from the sample inlet in a second, opposite direction parallel to the wellbore axis; and

an inlet packer completely surrounding outer peripheries of the sample inlet, first guard inlet, and second guard inlet.

20. The probe assembly of claim 19, in which the inlet packer includes a first packer segment disposed between the sample inlet and the first guard inlet and a second packer segment disposed between the sample inlet and the second guard inlet, wherein the first and second packer segments further comprise a reinforcement material.

21. The probe assembly of claim 19, in which an exterior face of the inlet packer includes a guard channel.

22. The probe assembly of claim 19, in which the guard channel includes a central ring section completely surrounding an outer periphery of the sample inlet, a first guard ring section completely surrounding an outer periphery of the first guard inlet, a second guard ring section completely surrounding an outer periphery of the second guard inlet, a first link section extending between the central ring section and the first guard ring section, and a second link section extending between the central ring section and the second guard ring section.
23. The probe assembly of claim 19, in which the guard channel includes a guard ring section completely surrounding an outer periphery of the first guard inlet and at least a first wing section connected to and extending away from the guard ring section.

24. The probe assembly of claim 23, in which the guard channel further includes a second wing section connecting to and extending away from the guard ring section.

25. The probe assembly of claim 23, further including a second guard channel having a guard ring section completely surrounding an outer periphery of the second guard inlet and at least a first wing section connected to and extending away from the guard ring section.

26. The probe assembly of claim 19, in which the guard channel is defined by a channel insert coupled to the inlet packer.

27. The probe assembly of claim 26, in which the channel insert is mechanically coupled to the inlet packer.

28. The probe assembly of claim 19, in which the sample inlet, first guard inlet, and second guard inlet are pivotably coupled to the inlet extension mechanism.
29. A downhole tool connected to a drill string positioned in a wellbore penetrating a subterranean formation along a wellbore axis, the tool comprising:
 a drilling collar having at least one stabilizing blade defining a blade axis;
 an inlet extension mechanism housed within the stabilizing blade; and
 a probe assembly coupled to the inlet extension mechanism, the probe assembly comprising:
 a sample inlet having a mouth portion with a first profile dimension in a direction parallel to the blade axis and a second profile dimension in a direction perpendicular to the blade axis, in which the first profile dimension is greater than the second profile dimension;
 an inner packer completely surrounding an outer periphery of the sample inlet;
 a guard inlet extending completely around an outer periphery of the inner packer;
 and
 an outer packer completely surrounding an outer periphery of the guard inlet.

30. The downhole tool of claim 29, in which the probe assembly is pivotably coupled to the inlet extension mechanism.

31. The downhole tool of claim 29, in which the mouth portion has a generally oval shape cross-sectional profile, with the first profile dimension comprising a major axis and the second profile dimension comprising a minor axis.

32. The downhole tool of claim 29, in which the second profile dimension is less than approximately 3.5 inches.